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ABSTRACT

a Graph-Based Approach to Nonlinear Model Predictive Control with Application to Combustion Control and Flow 
Control

Report Title

Systems with a priori unknown, and time-varying dynamic behavior pose a signi?cant challenge in the ?eld of 
Nonlinear Model Predictive Control (NMPC). When both the identi?cation of the nonlinear system and the 
optimization of control inputs are done robustly and ef?ciently, NMPC may be applied to control such systems. This 
dissertation presents a novel method for adaptive NMPC, called Adaptive Sampling Based Model Predictive Control 
(SBMPC), that combines a radial basis function neural network identi?cation algorithm with a nonlinear optimization 
method based on graph search. Unlike other NMPC methods, it does not rely on linearizing the system or gradient 
based optimization. Instead, it discretizes the input space to the model via pseudo-random sampling and feeds the 
sampled inputs through the nonlinear model, producing a searchable graph. An optimal path is found using an ef?
cient graph search method. Adaptive SBMPC is used in simulation to identify and control a simple plant with clearly 
visualized nonlinear dynamics. In these simulations, both ?xed and time-varying dynamic systems are considered. 
Next, a power plant combustion simulation demonstrates successful control of a more realistic Multiple-Input 
Multiple-Output system. The simulated results are compared with an adaptive version of Neural GPC, an existing 
NMPC algorithm based on Netwon-Raphson optimization and a back propagation neural network model. When the 
cost function exhibits many local minima, Adaptive SBMPC is successful in ?nding a globally optimal solution while 
Neural GPC converges to a solution that is only locally optimal. Finally, an application to ?ow separation control is 
presented with experimental wind tunnel results. These results demonstrate real time feasibility, as the control 
updates are computed at 100 Hz, and highlight the robustness of Adaptive SBMPC to plant changes and the ability to 
adapt online. The experiments demonstrate separation control for a NACA 0025 airfoil with Reynolds Numbers 
ranging from 90,000 to 150,000 for both ?xed and pitching (.33 deg/s) angles of attack.
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ABSTRACT

Systems with a priori unknown, and time-varying dynamic behavior pose a significant challenge in the field

of Nonlinear Model Predictive Control (NMPC). When both the identification of the nonlinear system and

the optimization of control inputs are done robustly and efficiently, NMPC may be applied to control such

systems. This dissertation presents a novel method for adaptive NMPC, called Adaptive Sampling Based

Model Predictive Control (SBMPC), that combines a radial basis function neural network identification

algorithm with a nonlinear optimization method based on graph search. Unlike other NMPC methods, it does

not rely on linearizing the system or gradient based optimization. Instead, it discretizes the input space to the

model via pseudo-random sampling and feeds the sampled inputs through the nonlinear model, producing

a searchable graph. An optimal path is found using an efficient graph search method. Adaptive SBMPC is

used in simulation to identify and control a simple plant with clearly visualized nonlinear dynamics. In these

simulations, both fixed and time-varying dynamic systems are considered. Next, a power plant combustion

simulation demonstrates successful control of a more realistic Multiple-Input Multiple-Output system. The

simulated results are compared with an adaptive version of Neural GPC, an existing NMPC algorithm based

on Netwon-Raphson optimization and a back propagation neural network model. When the cost function

exhibits many local minima, Adaptive SBMPC is successful in finding a globally optimal solution while

Neural GPC converges to a solution that is only locally optimal. Finally, an application to flow separation

control is presented with experimental wind tunnel results. These results demonstrate real time feasibility,

as the control updates are computed at 100 Hz, and highlight the robustness of Adaptive SBMPC to plant

changes and the ability to adapt online. The experiments demonstrate separation control for a NACA 0025

airfoil with Reynolds Numbers ranging from 90,000 to 150,000 for both fixed and pitching (.33 deg/s) angles

of attack.

xv



CHAPTER 1

RESEARCH OBJECTIVE

1.1 Motivation

Model Predictive Control (MPC) has been heavily researched and applied across several industries [60],

especially in the process control industry. Few Adaptive MPC techniques have been developed [52], and the

develpment of practical adaptive MPC methods that use nonlinear models is considered an open problem.

The introduction of an efficient nonlinear adaptive method for MPC would significantly expand the range

applications for which MPC is effective.

The understanding of nonlinear systems is key to solving numerous engineering problems. Along the

path to understanding these systems and solving relevant problems, identification and control methods that

capture and harness nonlinear behavior are necessary. To address problems of this sort, the proposed method,

Adaptive Sampling Based Model Predictive Control (Adaptive SBMPC), was developed. The development

of this nonlinear MPC method has culminated in the research focus of this dissertation. The unique opti-

mization algorithm, Sampling Based Model Predictive Optimization (SBMPO), has been applied in con-

junction with an adaptive, neural-network-based model in order to perform adaptive nonlinear MPC in a

more practical and effective manner than existing methods.

A first implementation of Adaptive SBMPC solved a simple single-input, single-output (SISO) nonlinear

example from the literature. This example served to demonstrate several properties of the approach, namely

the ability to avoid convergence to a local minimum and handle a time-varying plant. A theoretical proof for

the completeness of the proposed method is given. The results for this simplified example help us understand

the identification and control algorithms’ behavior while practical results contribute to real world problem

solving. Two problems of considerable practical significance are addressed in this dissertation: the first

is a power plant combustion control problem investigated by simulation, and the second is a problem of

boundary layer separation control investigated by wind tunnel experiments.

The power plant combustion problem was the first application of Adaptive SBMPC and involves the

immediately relevant competing objectives of efficient power generation and environmental sustainability.

Constraints on inputs and outputs are critical in this industry and MPC techniques are often selected for
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their ability to satisfy these types of constraints. This simulation illustrates the capability to control a time-

varying nonlinear plant and demonstrates the robustness added by using model adaptation. Furthermore,

results will show the avoidance of locally optimal but globally suboptimal solutions. For comparison, an

existing method, Neural GPC, is implemented and is shown to converge to a local minimum. Multiple-Input

Multiple-Output (MIMO) results are obtained for the combustion control simulation.

The second practical application, control of flow separation, is investigated experimentally using hard-

ware and real time feedback. As boundary layers along aerodynamic surfaces separate in active flight, the

phenomenon of flow separation hampers the performance of rotary and fixed wing aircraft. Wings, tails,

rotor blades, turbomachinery blades, and the fuselage itself are subject to stall, introducing losses and un-

desirable unsteadiness. While passive techniques achieve limited mitigation of separation effects in some

applications, there is a growing need for active control methods that are able to handle diverse and chang-

ing flow conditions. Flows with Reynolds numbers on the order of 100,000 are transitional and are more

susceptible to separation than flows in either laminar or turbulent regimes. Systems that employ existing

passive or active control techniques are able to produce some delay or mitigation of separation effects, but a

new adaptive approach is necessary to maximize performance and recover system losses under the realistic

variation in operating conditions experienced in flight.

1.2 Problem Statement

The primary objective of this research is to develop, implement, and demonstrate a new Nonlinear Model

Predictive Control (NMPC) method. The development of this method includes the specification of the algo-

rithm and some theoretical analysis of the behavior and performance of the algorithm, the implementation

includes the programming of this method for simulation and experimental use. Finally, the demonstration

consists of results of the application of this algorithm in simulation and in experiments. Performance and

computational cost comparisons to the best existing Adaptive NMPC method, Neural GPC, are provided.

The procedures as well as the tuning values used to accomplish these tasks are recorded so that the results

obtained here may be reproduced.

This dissertation develops a control system for general application to systems that could include nonlin-

earity and time dependent behavior. The following are included in the scope of this dissertation. The neces-

sary software design includes simulation implementations, online nonlinear system identification algorithm

implementations, and closed-loop control algorithm implementatinos. Experiments with wind tunnel hard-
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ware in the loop require the design and construction of an experimental platform for flow separation control.

Next, analysis of the simulated test results allow for comparison with stated objectives and previously pub-

lished adaptive model predictive control methods. Finally, the experimental results must be analyzed to

determine the effectiveness of the presented method when applied to a real flow separation control problem.

1.3 Dissertation Contributions

The research in this dissertation makes unique contributions in the areas of MPC and flow control by

being the first to publish the achievements listed below.

1. Apply the SBMPO graph search and RBF neural network identification methods to perform receding
horizon NMPC.

(a) First to perform adaptive NMPC using a neural network model that can change its structure as
well as its parameter values.

(b) First to present NMPC results for a time-varying plant.

(c) Theoretically demonstrate the soundness and completeness of SBMPO.

2. Experimentally demonstrate flow separation control with robustness to changing flow conditions.

(a) First to implement NMPC method for real time flow control.

(b) Demonstrate robustness to Reynolds number and angle of attack changes.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Nonlinear Model Predictive Control

Model Predictive Control (MPC) is widely used in a growing number of industries [59]. Although

most MPC implementations use linear models, nonlinear models allow for better performance over a wider

operating range [6][24][75][31]. Nonlinear MPC (NMPC) methods require a nonlinear model for predict-

ing system behavior, which can be obtained by first principles or from input and output data using system

identification. Advantages of MPC and NMPC methods include satisfaction of input and output constraints

and good performance for systems with time delays. The computational cost associated with the numerical

solution techniques of many NMPC approaches hinders their application in most practical control prob-

lems except those with slow dynamic behavior. Adaptive implementations of NMPC provide the additional

benefit of enabling the model to be updated as plant dynamics change. Several NMPC techniques have

been developed by extending existing linear MPC techniques to handle plants with strong nonlinearities

[59][67][5].

2.2 Predictive Optimization

The optimization for most current NMPC implementations use either sequential quadratic programming

or interior point algorithms [52][7]; some other approaches include explicit approximate nonlinear program-

ming [26] and neural network predictive optimization [43]. Drawbacks of sequential quadratic programming

methods such as Neural GPC include the computational expense of computing first and second derivatives,

possible convergence to local minima that are globally suboptimal, and a lack of robustness due to overly

fine tuning requirements. The explicit approximate methods achieve rapid online computation times because

the nonlinear programming is solved offline before execution begins, and the online control consists of linear

model identification and Linear Quadratic Regulator (LQR) control of perturbations from the approximate

nonlinear control law. This method lacks robustness and the ability to perform optimally for a time varying

nonlinear system. Approaches that use neural networks for control are better equipped to adapt to changes

in the nonlinear plant behavior, however they are computationally inefficient.
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The most notable neural network control method, Adaptive Predictive Control employs the Levenberg-

Marquardt algorithm to learn its neural network parameters. This variant of nonlinear least squares is re-

ported to be computationally expensive and a barrier to online implementation [43]. NMPC, although theo-

retically suitible for particular applications such as flow control, has been considered impractical because of

the computational cost associated with traditional techniques. For this reason, none of the NMPC methods

mentioned above in this section have been successfully implemented in a real time flow control experiments.

In his book Reduced Order Modelling for Flow Control, Noack writes that “even without contraints, a huge

numerical burden will be involved in nonlinear MPC. Today, this is still a limiting factor for flow control

applications” [54]. The proposed approach to adaptive NMPC, Adaptive Sampling Based Model Predic-

tive Control (Adaptive SBMPC), first presented in [64], uses the optimization technique known a Sampling

Based Model Predictive Optimization. This approach is unique from other methods used for NMPC because

the optimization is done by performing a graph search on a sampled input space. This method is explored in

this dissertation with an emphasis on achieving the computational efficiency to solve problems in real time.

2.3 Neural Network Identification

The use of an artificial neural network allows nonlinear models to be identified in a general manner by

composing a function that computes future outputs based on past states. For this application the state vector,

xk = (yT
k−1,y

T
k−2, ...,y

T
k−ny

,uT
k−1,u

T
k−2, ...,u

T
k−nu

)T , (2.1)

consists of nu prior plant inputs and ny outputs. The form,

yk = f (yk−1,yk−2, ...,yk−ny ,uk−1,uk−2, ...,uk−nu)≡ F(xk), (2.2)

is known as as a nonlinear autoregressive exogenous inputs (NARX) model form because it is analogous

to the autoregressive exogenous inputs (ARX) form for linear models. If F(xk) were a linear function, the

equation would simplify to an ARX formulation,

ŷk = Axk, (2.3)

with the matrix A of constant coefficients.
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Figure 2.1: The layout of a sample RBF network consists of a hidden layer containing one hidden
neuron for each distinct state pattern that the algorithm encounters. Collectively these pattern
state vectors make up a basis with which all system dynamics are modelled. With enough of these
hidden neurons the network is able to match arbitrarily complex nonlinear behavior.

While there are many ways to construct the nonlinear function F(xk), neural network methods construct

this function as a composition of simpler functions called neural units, which can be arranged in series and

parallel to form a network.

A widely used neural network technique is the Back Propagation Network (BPN) [30]. This method

requires a priori specification of the network size and number of layers and performs parameter updates

using an iterative update rule called back propagation. Since its introduction, many BPN variants have

been proposed, such as recurrent versions of BPN [57] and the addition particle swarm optimization to the

back propagation approach [74]. A disadvantage of BPN-type methods is their fixed structure. Each of the

algorithms listed below are initialized with no neural units and are able to adapt their structure by learning

the suitable number of units to represent the behavior of the system.

The General Regression Neural Network (GRNN) [69] and the Resource Allocation Network (RAN)

[58] both use Radial Basis Function (RBF) neural network structures, depicted in Fig. 2.1, typically having

Gaussian activation functions. Major differences between the two include the EKF parameter optimization

used by RAN, which contrasts to the simpler update rule utilized for GRNN, and the larger parameter space

of RAN. The RAN algorithm fits a separate width to each Gaussian unit while GRNN assumes a common

width for each of its Gaussian units.

The network implemented in this research comes from an extension [73] of the RAN method by Platt.

This Minimal Resource Allocation Network (MRAN), like RAN, has for its first layer a collection of neural
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units that respond in parallel when the state xk is nearby (according to the Euclidean norm) to a previously

seen pattern. This method adds to RAN a pruning strategy, which ensures that the model retains only the

hidden neurons which have recently contributed significantly to the model output.

2.4 Power Plant Combustion

Energy policy and the rising cost of fossil fuels has highlighted the need for efficient and reliable methods

to control the combustion processes of power plants. Legislation that taxes or sets limits on carbon emissions

is becoming more common [46][61][3], which has increased demand for control systems that reliably meet

constraints on emissions outputs.

When controlling a combustion system, constraints on inputs and outputs are necessary in order to meet

power demands, ensure safe operating levels, or regulate environmental pollutants. For these reasons, the

industry’s need for handling these constraints has steadily increased, and Model Predictive Control (MPC) is

arguably the control methodology most suitable to handle them [51]. MPC uses an internal model that rep-

resents the system to be controlled, and produces a future sequence of control inputs and the corresponding

output trajectory that optimizes a cost function, subject to constraints on functions of the inputs and outputs.

Receding horizon MPC approaches use this model to predict several steps in the future while implementing

only the immediate next step.

MPC is commonly applied in simulations to power plants [9][47][38][23], and, for applications where

no closed-form model is available, is typically applied in conjunction with an identified system model.

Linear MPC techniques often use a Least-Squares, Gradient Descent, or Newton method to fit a linear

model to observed data [59]. Nonlinear MPC techniques, which are far less commonly used, often fit

a Neural Network, Neuro-Fuzzy, Nonlinear Polynomial, or other Nonlinear State Space model to predict

system behavior [60].

Due to environmental effects, normal wear, and fatigue, power plant combustion chambers can exhibit

time-dependent dynamic behavior. The neural network model form is suitable for modeling the nonlin-

earities and time variation, which lead to suboptimal performance when they are ignored. The Neural

Generalized Predictive Control (Neural GPC) method [67][27] consists of a Back Propagation Neural Net-

work (BPN) and Newton-Raphson cost optimization. It is best able to handle problems with nonlinearities

and time variation among existing NMPC methods because it balances speed of optimization with adaptive

capability.
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An analytical model for coal combustion has been derived [8]. This model has been used in a Single-

Input Single-Output (SISO) simulation of Gaussian Process NMPC [25], which requires a priori specifi-

cation of the plant’s dynamic equations and achieves rapid online computational speed, at the expense of

significant offline computation and a lack of robustness to plant changes. This research in this dissertation

solves the problem that was investigated in [25] using an adaptive algorithm that does not require prior

knowledge other than the order of plant dynamics. Furthermore, the control problem is extended to include

multiple inputs and outputs and time-varying plant dynamics.

2.5 Flow Separation

For decades, flow separation has been of particular interest in engineering applications where improved

aerodynamic performance is desired. Control of flow separation, both active and passive, is a key component

of existing aviation technology. Passive control methods, such as leading edge surface roughness or the

inclusion of vortex generators, rely on a stationary structural component to produce a reduction or delay

in separation effects. These techniques typically produce an early transition to turbulence or streamwise

vortical structures, each of which have been shown to mitigate separation [40]. The effectiveness of passive

techniques is limited in comparison with active techniques, which rely on powered mechanisms to alter

the flow, especially when conditions off the design point are considered [10]. These types of off-design

conditions are common for aircraft that perform maneuvers, micro-aerial vehicles, and aeronautical systems

that are deployed in diverse environments.

Previous adaptive flow separation research has aimed to capture the nonlinear dynamics of the flowfield

by identifying an instantaneously linearized model that varies with time. The optimization of a linear model

has the advantages of speed and simplicity over those that consider nonlinear models. The unmodelled

dynamics, however, can cause such techniques to be suboptimal and even unstable.

2.5.1 Nonlinear POD Methods

Proper Orthogonal Decomposition (POD) techniques have been used to identify models in the form of

polynomial difference equations [65][36] that are sufficient for open loop control design [50]. However, due

to computational expense, closed loop flow control implementations have been limited to linear models. The

primary advantage of SBMPO over alternative methods is that the optimization phase does not prefer linear

to nonlinear models, and the algorithm does not need to compute closed-form gradients. Although SBMPO
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has the ability to optimize inputs to a POD model, POD models are steady state in nature and do not capture

the transient behavior or hysteresis effects that are necessary to control aerodynamic flows at relevant time

scales.

2.5.2 Recent Advances in Active Flow Control

The significant increase in capability and decrease in cost of computing hardware has led to the fea-

sibility of active control techniques of increasing sophistication. Both open-loop and closed-loop control

schemes have been applied to flow control problems and there is evidence that closed loop approaches offer

significant improvement in performance over open-loop control [55][34].

The linear method Generalized Predictive Control (GPC) [13] as well as ARMARKOV adaptive control

[72] have been effective when applied to the problem of separation flow control [71]. GPC is, in fact, an

implementation of receding horizon model predictive control (MPC) that uses closed-form expressions to

compute the input sequence. Although many passive and open loop control approaches to the problem of

flow separation have been examined, relatively few closed-loop separation control systems have been studied

and successfully implemented. This recent work by Tian et al., is the first to incorporate a sophisticated

adaptive control approach, implementing ARMARKOV online system identification and the ARMARKOV

adaptive disturbance rejection algorithm. Their paper only presents results for stationary and very limited

flow parameters: only one Reynolds number and one fixed angle of attack. More recent work presents

performance for multiple angles of attack; however, each experimental trial is still conducted at a stationary

angle [71]. Since the ARMARKOV and GPC control optimizations rely on closed-form expressions, they

are very difficult, if not impossible, to generalize to nonlinear systems unless the dynamics are linearized.

Using linearization techniques, GPC has been extended to nonlinear systems using neural network models.

These extensions have yet to be applied for flow control although they have been applied in other nonlinear

applications both in simulation and experimentally.

Several areas of flow control research, including suppression of cavity flow resonant tones and mitiga-

tion of flow separation, have advanced rapidly in recent years as new technologies have both created demand

for and expanded the capabilities of such systems. The study of cavity flow control has demonstrated that

mathematical techniques such as Proper Orthogonal Decomposition (POD) and model reduction are effec-

tive tools for controlling aerodynamic systems [50][20]. While these studies incorporated flow visualization

and analysis efforts to produce nonlinear models that are effective for developing open-loop control strate-
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gies, it has been more practical to linearize these models for the sake of computational efficiency when

implementing real-time closed loop control [55][34].

The problem of flow separation overlaps with the study of cavity flow; frequency domain methods are

applied to model and control the flow dynamics in both applications [49][12][42]. POD methods similar to

those applied to cavity flow have also been used for flow separation [22]. Actuator development has also

been key to the recent advances in the field of flow separation control. Both synthetic jet unsteady actu-

ators [71][70] and steady microjet actuators [12][4] have been effective in separation control experiments.

Because of the advantage of high momentum capability with low power requirements [41], microjets have

been selected as the primary actuators for this research.

2.5.3 Actuation for Flow Control

While the innovations outlined in this dissertation may be applied to many sensor and actuator hardware

configurations, microjet actuators have been selected for this research. Microjet actuators have distinct ad-

vantages over alternatives actuation methods for the control of flow separation. This study will use microjets

capable of steady actuation; however, the control system will also be able to supply unsteady input signal

when a capable actuator is installed. While other micro actuators are able to produce comparable jet veloci-

ties, ease of fabrication and in-house expertise make microjet actuators a practical choice. After proving the

control system concept with microjets, other actuators may easily be interchanged for comparison.

Piezoelectric synthetic jets, another common flow control actuator, while having the advantage of zero

net mass flux, are known to have difficulty generating the mass flow rates and jet speed required for higher

speed applications [4]. Newly developed plasma based thermal actuators have difficulties similar to those

of synthetic jets and tend to take longer to alter the flow [53]. Non-thermal plasma based actuators are in

development but are not as mature and have not achieved the control authority of microjet actuators. At this

point, microjets provide the greatest control authority per unit of power consumption, but it is possible that

still more efficient actuators may be available in the next few years.

2.5.4 The Need for an Improved Performance Function

Previous flow separation control research has used an RMS pressure value as the performance function

for feedback control [71][70][68]. While minimizing prms at a particular transducer location will sometimes

maximize the desired quantity CL/CD, Sheplak et al. present results where at different flow conditions,

control that maximizes CL/CD produces an increase in prms [66]. This result gives evidence that minimizing
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prms at a single sensor is insufficient for effective control across a wide range of flow conditions. As derived

in [62], a performance function that incorporates several pressure transducer signals and correlates with

CL/CD will make effective closed-loop performance possible over a wider range of angle of attack and

Reynolds number conditions. Since combining multiple transducer signals in an intelligent manner collapses

multiple variables into one performance variable, this method will also reduce the computational effort

needed to perform system identification and control with multiple sensors.
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CHAPTER 3

ADAPTIVE SBMPC

3.1 Methodology

The Adaptive SBMPC approach to nonlinear MPC consists of identification of an approximate system

model during the learning phase followed by simultaneous identification and control during the control

phase. As shown in Fig. 3.1, a neural network is used to model the plant dynamics and SBMPC is used to

generate actuation signals to control the plant. A summary of the MRAN identification algorithm and the

details of the SBMPC methodology is described below, a full description of the MRAN algorithm may be

found in [2].

3.1.1 The MRAN Identification Network

The Minimal Resource Allocation Network (MRAN) algorithm implemented in this research was de-

veloped by Yingwei et al. [2]. It is based on the Resource Allocation Network algorithm, a general method

for function approximation [58]. The advantage over other methods is that the network eventually reaches

a constant size despite increasing the length of the training set. Yingwei et al. extended RAN to MRAN

by adding a pruning step. The MRAN learning paradigm is sufficiently general to represent many different

systems with little or no alteration of the algorithm’s tuning parameters.

The RBF Neural Network. Referring to Fig. 3.2, MRAN is a general purpose procedure for function

approximation that aims to represent some vector output f (x) as the result of some nonlinear mapping of

the input state vector x. When applying MRAN to learn a system’s input-output behavior, x is the vector of

the past m inputs and n outputs given by

x = [yT
i−1,y

T
i−2, ...,y

T
i−n,u

T
i−1,u

T
i−2, ...,u

T
i−m]

T , (3.1)

and f (x) is the current output prediction given by

f (x) = ŷ = a0 +
NH

∑
j=1

a jφ j(x). (3.2)
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Figure 3.1: Block Diagram of Adaptive SBMPC. The control task is to provide inputs u to the
plant such that outputs y match a reference trajectory r. The neural network model is identified
online, and as candidate input trajectories u∗ are provided by SBMPO to the neural network, their
corresponding predicted outputs ŷ∗ are returned.

When each function φ j is radially symmetric about some unique centroid µ j, the function defined in

(5.10) is known as a Radial Basis Function (RBF). The RBF is a single layer neural network structure as

depicted in Figure 2.1. In MRAN, each φ j is a Gaussian function with a unique width σ j, that is,

φ j = exp

(
−
‖xk−µ j‖2

σ2
j

)
. (3.3)

As seen in (5.10), the RBF network output is a linear combination of several Gaussian functions. Each set

of parameters {µ j,σ j,a j} constitutes a hidden unit. As the MRAN algorithm runs, the number of hidden

units N may grow and shrink, and the parameter values are continually refined to minimize prediction error.

MRAN Methodology. The MRAN algorithm, depicted in Fig. 3.2, begins with an empty network

(NH = 0) and uses prediction error criteria at each time step k to determine whether an additional hidden unit

is necessary to represent the system. In each algorithm iteration, the network is refined to reduce prediction

error either via addition of a hidden unit or an Extended Kalman Filter (EKF) adjustment of the parameter

vector of all current hidden units. Hidden units that have low relative contribution over a designated number

of time steps Mp are removed from the network in the pruning stage.

The three error criteria are

e1 = ‖yk− ŷk‖, (3.4)

13



Figure 3.2: Minimal Resource Allocation Network Flowchart. The MRAN algorithm learns the
number of hidden units needed to represent the system and continually refines the parameters of
each hidden unit.

e2 =

√√√√ k

∑
i=k−M+1

‖yi− ŷi‖2

M
, (3.5)

e3 = ‖xk−µ
∗‖. (3.6)

Criterion e1 represents instantaneous error, while e2 is an RMS error averaged over the RMS window M,

and e3 is the Euclidean distance from the current state to the nearest basis vector, denoted µ∗. A new hidden

unit is added only when

e1 > E1 and e2 > E2 and e3 > E3, (3.7)

where thresholds E1, E2, and E3 are tuning parameters.

When (3.7) is satisfied, a new hidden unit is introduced with parameter values chosen to cancel out the

instantaneous error, yielding

aNH+1 = ek, µNH+1 = xk, σNH+1 = κ‖xk−µ
∗‖, (3.8)

where the initial Gaussian width σNH+1 depends on the basis function overlap parameter κ .

If a hidden unit was not introduced during a time step, the vector of model parameters,

w = [aT
0 ,a

T
1 ,µ

T
1 ,σ1, ...,aT

NH
,µT

NH
,σNH ]

T , (3.9)
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is updated using the following Extended Kalman Filter (EKF) procedure. First, compute a gradient matrix

Bk , ∇wF(xk) for the current time step, which is evaluated as

Bk = [In,φ1In,φ1(2a1/σ
2
1 )(xk−µ1)

T ,

φ1(2a1/σ
3
1 )‖xk−µ1‖2, · · · ,

φNH In,φNH (2aNH/σ
2
NH
)(xk−µNH )

T ,

φNH (2aNH/σ
3
NH
)‖xk−µNH‖2]T ,

(3.10)

where In is the n×n identity matrix. To perform the EKF update, define the Kalman gain matrix

Kk = Pk−1Bk[Rk +BT
k Pk−1Bk]

−1, (3.11)

with system error covariance and sensor noise covariance matrices Pk and Rk. In the RAN algorithm, Rk = R,

a constant matrix, specified by sensor properties or offline measurements. At each EKF step, P is updated

using

Pk = [Ip−KkBT
k ]Pk−1 +qIp, (3.12)

where q is a step size parameter and dimension p is the number of elements in w. The parameters are updated

to reduce the size of the identification error,

wk = wk−1 +Kkek. (3.13)

When a hidden unit is introduced, the dimensionality of P must increase by the number p1 of parameters

that are added to w, yielding

Pk =

(
Pk−1 0

0 γ0Ip1

)
. (3.14)

The parameter γ0 is an initial estimate of the variance for newly assigned data-based parameter values.

This procedure, which results in either the addition of a new hidden unit or the EKF refinement of existing

parameters, repeats until terminated.

The above specifies the Resource Allocation Network (RAN) algorithm [58], which combines EKF gra-

dient based optimization with heuristic based pattern recognition and learning to produce identified models

that approximate general nonlinear dynamics in an efficient manner. A pruning step is added to the RAN

algorithm by Yingwei et al. to produce the MRAN algorithm [2]. This step removes hidden units whose

relative contribution to the overall network output falls below a threshold for a number of consecutive time

steps.
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The Pruning Criterion. The pruning criterion ensures that the network does not retain hidden units

that are not needed to describe system behavior. Without a proper pruning condition, the network size would

tend to grow indefinitely as adaptations are made to capture new behavior patterns. A hidden unit’s output is

considered insignificant if the ratio of it’s contribution to the summation of (5.10) to the largest term in the

summation is smaller than a chosen threshold δp. To decide which hidden units to prune, a counter keeps

track of the number of consecutive time steps during which each hidden unit has produced an insignificant

contribution to the output. Once the number of consecutive time steps for a particular hidden unit exceeds a

chosen limit Mp, that hidden unit is removed from the neural network.

Algorithm Extension: Multistage Pruning Criterion. This research extends the MRAN pruning

logic by allowing multiple pruning criteria, each represented by a significance threshold δp,k and consecutive

limit Mp,k. If any one of these criteria is met by a given hidden unit, the unit is pruned. By allowing for

pruning behavior that specifies both fast-acting pruning behavior (with smaller δp,k) and long-acting pruning

behavior (with larger δp,k), the multistage approach to pruning gives more flexibility to trade off network

size and prediction accuracy.

MRAN Computational Complexity. The bottleneck in the computation of the MRAN algorithm is

the EKF, which is intractably O(N2) in the number of hidden units [29]. For a given real-time constraint,

this will limit the maximum network size for which the algorithm may be feasibly executed. If assumptions

are made about the hidden unit parameters, they may be organized into mutually exclusive groups, which

would require smaller matrix inversions and reduce the complexity. For the problem presented below, the

maximum network size is 480, a tuning parameter which allows for the tradeoff of prediction accuracy

versus computational cost.

3.1.2 Sampling Based Model Predictive Optimization

As a means of solving model predictive optimization problems without computing gradients, Sampling

Based Model Predictive Optimization (SBMPO) has been developed and implemented on experimental

platforms [19][18][1]. For a nonnegative cost function C(·), SBMPO may be applied to solve the nonlinear

optimization problem,

min
{u(k),...,u(k+N−1)}

N−1

∑
i=0

C (y(k+ i+1)− r(k+ i+1)) , (3.15)

subject to the nonlinear state space equations,
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Figure 3.3: Sampling Based Model Predictive Optimization Summary. The algorithm discretizes
the input space and makes model-based state predictions, x̂k+ j, in order to minimize a cost func-
tion.

x(k+ i) = g(x(k+ i−1),u(k+ i−1)), (3.16)

y(k) = h(x(k)), (3.17)

and the constraints,

x(k+ i) ∈ X f ree ∀ i≤ N, (3.18)

u(k+ i) ∈ U f ree ∀ i≤ N, (3.19)

where r(k) is the reference input and X f ree and U f ree represent the states and inputs respectively that do

not violate any of the problem constraints. SBMPO is described in Fig. 5.1 and is easily applied to both

linear and nonlinear models, combining techniques for sampling the input domain with an efficient graph

search method such as A∗. The details of SBMPO are given in [1]. See Appendix A for a pseudocode

listing of the SBMPO algorithm. The implicit grid test for overlapping states [21] is not implemented. This

simplification of the algorithm is applied because for the short prediction horizons used, state overlap is

improbable. Below, various aspects of SBMPO are emphasized.

Sampling the Input Domain. The field of path planning in robotics has seen recent innovations that

have used sampling techniques [39][44]. SBMPO involves the sampling of the space of allowable inputs.

Halton sampling, in particular, is a method based on the low-discrepancy Halton sequences that has been
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shown to provide representative sample sets consisting of fewer points than sets generated using pseudo-

random numbers or regular grids [56][11]. Satisfaction of input constraints is automatic, since it is the

allowable inputs that are sampled, and since the inputs are propagated forward through the model, no inver-

sion of the model is needed.

The Graph Search. Using the current state and input samples, several nodes are computed by propa-

gating the model and added to a graph with tree connectivity, as illustrated in Fig. 5.2. The branchout factor

B, a tuning parameter of the algorithm, determines how many child nodes are generated when a particular

parent node is expanded. In the implementation of this algorithm, each node has a pointer to its parent node

so that, for every node, there is an implied path from the root node to itself. Therefore, the optimization task

is to choose the node at horizon depth that is reachable by the lowest cumulative cost. The computation is

done by best-first search using the A∗ algorithm [28] or one of its variants such as LPA∗ [37].

SBMPO Completeness. For the receding horizon MPC problem, we define a goal state as any horizon-

depth node whose trajectory is minimal in cost. A sound graph search algorithm returns only trajectory so-

lutions that reach a goal state. A given sound algorithm is complete if it always returns one such solution if

any solution exists. Assuming the heuristic function always underestimates the lowest cost to the prediction

horizon, SBMPO, like A∗ and other graph search algorithms, may be shown to be complete over a given

graph. A proof loosely based on the procedure in [35] is formally derived in Appendix B. Its culmination,

Theorem B.0.6, guarantees that, subject to sufficient depth and breadth of sampling, SBMPO will find a

globally optimal solution. Due to gaps between samples, some suboptimality will result. Note that with the

nonuniform sampling strategy described in Subsection 3.1.2, the gaps between samples become very small

at steady state.

Obstacles and Hard Constraints. Because the input domain samples are selected from the specified

region only, hard input constraints are met automatically. An additional advantage of using a graph search

approach is the ease of dealing with obstacles and hard output constraints. Naturally, if a node represents a

state that is not allowed by the specified constraints or obstacles, it is removed from the queue and the next

node in the queue is chosen instead.

Algorithm Contribution: Precomputed Samples. The Halton sequence algorithm, which is poten-

tially used thousands of times at each time interval when the SBMPC routine is called, was a major contribu-

tor to the total runtime of SBMPC. Generating new Halton samples takes a median of 210 times longer than
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Figure 3.4: SBMPO Search Graph. The graph is built by expanding the most promising node to
generate B child nodes. Each child node is assigned an input sample, which is propagated forward
through the model to predict a state for that node. The potential cost of reaching that state is used
to prioritize the nodes and select the most promising candidate for the next iteration of expansion.

a lookup table query; therefore, precomputing these samples and storing them in memory enables the run-

time code to execute much faster while yielding identical results. Note that although the uniform samples

are generated offline, the transformation to a nonuniform distribution, described in 3.1.2, is not precom-

puted. In order to maintain integrity near the boundary of the input sampling domain, it is necessary to use

a truncated, asymmetric distribution when sampling changes in an input that is near its boundary. Because

this calculation is state-dependent, it is carried out in run-time which is a major contributor to the execution

time difference between the cases of uniform and nonuniform sampling density.

Algorithm Contribution: Nonuniform Distribution. The uniform sampling density typically used

for SBMPC may be transformed in order to achieve greater relative sampling density in a desired region of

the input domain. In order to preserve input constraint satisfaction, the range sampled by the uniform dis-

tribution should be maintained. The following procedure can be followed to obtain a nonuniform sampling

distribution aggregated about zero:

1. Transform the samples linearly to occupy the range [−1,1]

2. Record the sign of each transformed sample

3. Raise each transformed sample to an integer power

4. Restore the sign (if even power) and apply the inverse linear transform to the samples

Using a nonuniform sampling density can improve the performance of SBMPC by reducing the branchout

factor required to converge to some near-optimal trajectory. Both the generation of Halton samples and the

transformation described here may be computed offline and accessed through a lookup table.
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SBMPO Computational Complexity. The execution time required to run SBMPO, the optimization

phase of Adaptive SBMPC, is roughly proportional to the number of nodes expanded, which is the case for

most graph search algorithms [17]. The SBMPO search tree is generated and explored in a best-first sense.

For a maximum graph size of V vertices, SBMPO is an O(|V |) algorithm since, in the worst case, every node

with depth less than the control horizon will be expanded, yielding an upper bound of BN−1 expansions. In

practice, the number required is far fewer, but the worst case is considered when developing a real-time

execution guarantee. While real time algorithms are often programmed to terminate early in the event of

a longer-than-feasible execution time, this can often lead to undesired performance. In the implementation

of SBMPO, the real-time guarantee is achieved by limiting the nodes that may be generated in a single call

of the SBMPO routine. In the event that the optimization phase terminates early, the evaluated nodes of

greatest depth are listed and the node among those with lowest cost is chosen.

3.2 Simulation and Results

For comparison, both Adaptive SBMPC and Neural GPC were used to control the benchmark SISO

nonlinear plant [73] described by the difference equation

y(k) =
29β (k)

40
sin
(

16u(k−1)+8y(k−1)
β (k)(3+4u(k−1)2 +4y(k−1)2

)
+

1
5

u(k−1)+
1
5

y(k−1),
(3.20)

where β (k) is a parameter that may be modified to alter the behavior of the plant. The MPC cost function,

J =
N−1

∑
i=0

(y(k+ i+1)− r(k+ i+1))2 , (3.21)

was optimized by each algorithm, equally weighting each future term up to the prediction horizon N. The

SISO, first-order nature of the plant allows simple visualization of the state-to-cost behavior, by plotting the

states u(k−1) and y(k−1) on the lateral axes and the cost (3.21) on the vertical axis. In order to simplify

the visualizations, the cost functions have prediction horizon N = 1. Two versions of the plant are visualized

in Fig. 3.5: (a) β = 1.0 and (b) β = 0.2.

The following three plant cases were considered:

1. Fixed plant with β = 1.0, r(k) = 2.2

2. Fixed plant with β = 0.2, r(k) = 0.4
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(a) (b)

Figure 3.5: Benchmarking Plant Visualization. Plot (a) is for β = 1.0, and plot (b) has β = 0.2.
By modifying β , the number of occurances of local minima in the state space may be greatly
increased. In both plots, the prediction horizon N = 1.

3. Changing plant with β ∈ [0.8,1.0], r(k) = 2.2

The first of these is a straightforward control problem in which the algorithms can usually plan from the

initial state to the set point without encountering a local minimum. In the second plant configuration,

however, many local minima exist between the initial state and desired set point. The set point r was also

reduced to 0.4 for this case because the original set point, 2.2, is not reachable for small β . The third is a

control problem with a time-varying plant, where the parameter β varies according to

β (k) =


1.0 for 0 < k ≤ 50
−0.9 for 500 < k ≤ 100
0.8 otherwise

, (3.22)

so that both the neural network model and control inputs must be actively modified to maintain optimal set

point tracking.

In each simulation trial Adaptive SBMPC or Neural GPC first identifies the nonlinear system during the

learning phase and then is given a fixed set point to track as a reference trajectory. During the learning phase,

only the neural network identification portion of the algorithm is active, while during the control phase, both

identification and control algorithms are in operation.
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Figure 3.6: Training Phase Prediction Errors. Though the BPN algorithm is able to execute each
iteration more quickly, completing 25 times more iterations than the RBF learning algorithm,
the latter converges much faster and produces lower prediction errors throughout the 30-second
learning phase.

3.2.1 Identification Comparison

The identification methods used in Adaptive SBMPC and Neural GPC differ significantly although both

are neural network based. The MRAN algorithm described in Section 3.1.1 is used to construct the RBF

network in Adaptive SBMPC, whereas Neural GPC uses a Back Propagation Network (BPN) with a sigmoid

activation function, and selects a fixed number of hidden units. The neural network parameters are initialized

randomly and modified at each time step using a back propagation rule.

In the learning phase, random white noise over the allowable input range was provided to excite the

system. Input and output data was fed to the identification algorithm sequentially, and at each time step, a

prediction was made before adjusting the neural network to reduce the error. For a single time step, the BPN

method executed up to 25 times faster than MRAN, primarily due to the costly EKF. However, the RBF

method trained using MRAN produced predictions with significantly lower errors than the BPN method.

In order to make a proper comparison, both algorithms were allowed a thirty-second training phase. The

learning phase error results of Fig. 3.6 indicate that throughout the learning phase, the RBF network made

predictions with lower error. Even though the BPN method computed many more iterations within the thirty

seconds, the convergence rate of back propagation is far slower than that of the EKF of MRAN.
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3.2.2 Control Comparison

For the control phase, the algorithms were given a constant set point toward which to drive the system

output. Optimization was performed in a receding horizon fashion with a control horizon NC of 2 and a

prediction horizon N of 10.

(a) (b)

(c)

Figure 3.7: Case 1 Results—β = 1.0 step tracking. After a 30-second training phase, the reference
was tracked using GPC (a) and SBMPC (b). Both converge rapidly to the desired set point and
achieve steady state estimation and control errors of zero. In the error plot (c), tracking error is
the absolute percent difference between desired and actual outputs, while prediction error is the
absolute percent difference between predicted and actual outputs.

In Figs. 3.7(a) and 3.7(b) we see the control comparison under the conditions β = 1.0. Both algorithms

produce good performance, and although the plant is nonlinear, there is no significant disadvantage caused

by linearizing the system because local minima are not encountered. From the plots it is evident that both

algorithms are able to achieve low errors for this case. For the β = 0.2 case, Figs. 3.8(a) and 3.8(b) show
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that Neural GPC converges to a suboptimal local minimum and hence fails to track the desired reference,

whereas SBMPC converges to the global minimum and has near zero steady state tracking error. For the

third case, with variable β , both algorithms achieve good performance, tracking the set point as shown in

Figs. 3.7(a) and 3.7(b).

3.2.3 Run Time Statistics and Real Time Feasibility

The computational times presented in Table 4.2 were measured during simulation execution for each of

the three cases. The timing period begins before the SBMPC routine and ends after SBMPC has computed

the next control input. Median and worst case performance over each 200-timestep simulation run are

presented. Both algorithms were implemented in C on a 2.0 GHz quad-core AMD processor.

The Adaptive SBMPC algorithm solves the nonlinear optimization more efficiently than Neural GPC.

In particular, as seen in Table 4.2, it requires far less computational time per step, and as seen in Figs.

3.7(c), 3.8(c), and 3.9(c), it requires fewer time steps to converge to a near-optimal solution. Note that GPC

uses a Newton-Rhaphson method relying on plant linearization while SBMPC is based on a graph search

method that directly propagates the nonlinear plant model and is guaranteed to find the global minimum

given sufficient sampling and sufficient length of the prediction horizon. Hence, SBMPC, unlike GPC, is

not susceptible to slow convergence when the second derivative is small, large overshoot and constraint

violations due to a non-well-behaved first derivative, and non-convergence due to poor initial estimates.

Table 3.1: Adaptive SBMPC Run Time Statistics: Case 1

Median CPU Times

Plant Configuration
Control Algorithm

GPC SBMPC
Case 1 146 MFLOPS 2.67 MFLOPS
Case 2 42.0 MFLOPS 4.83 MFLOPS
Case 3 148 MFLOPS 2.50 MFLOPS

Longest CPU Times

Plant Configuration
Control Algorithm

GPC SBMPC
Case 1 597 MFLOPS 5.33 MFLOPS
Case 2 166 MFLOPS 13.8 MFLOPS
Case 3 597 MFLOPS 6.50 MFLOPS
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3.3 Summary

Adaptive SBMPC, a new approach to adaptive nonlinear model predictive control, is presented and ap-

plied in simulation to a benchmark nonlinear control problem from the literature. The nonlinear dynamics

of the SISO benchmark system were learned and applied in feed-forward control. Efficient nonlinear opti-

mization was performed and close reference tracking was achieved. The SBMPO algorithm for optimization

is shown to be a complete search algorithm subject to sufficient length of the prediction horizon. Unlike ap-

proaches that optimize by linearization, global convergence is achievable even when numerous local minima

exist. For comparison, the established NMPC technique, Neural GPC was also implemented. Through sim-

ulated identification and control problems, adaptive SBMPC was shown to be capable of faster and more

optimal convergence.

Results were presented for a system with fixed as well as changing dynamics, which highlights the

adaptive nature of the control system. One limitation of this and other NMPC approaches is the breakdown

due to complexity for large numbers of inputs and outputs. However, SBMPO is naturally compatible with

parallel computation since it uses a divide-and-conquer approach perform optimization. Node expansion is

the most costly portion of the Adaptive SBMPC algorithm, but these computations can be implemented in

parallel. There is also a possibility for significant computational improvement with the addition of search

heuristics and a parallel implementation of portions of the algorithm. Within an A∗ optimization, a good

heuristic can dramatically reduce the number of nodes that are expanded, and performing the edge cost

calculation in parallel on multiple cores could significantly reduce the required run time per node. Future

work includes the incorporation of learned heuristic functions for problems where no good heuristic is

known based on first principles.
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(a) (b)

(c)

Figure 3.8: Case 2 Results—β = 0.2 step tracking. After a 90-second training phase, the reference
was tracked using GPC (a) and SBMPC (b). Both converge more slowly than in the previous
case. However Neural GPC convergence takes 100 simulation steps while the Adaptive SBMPC
method converges within 20 steps. The GPC suboptimal convergence state is due to finding a local
minimum. The error plot (c) indicates a difference of 2.5 orders of magnitude between globally
optimal convergence of SBMPC and the locally optimal convergence of GPC.
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(a) (b)

(c)

Figure 3.9: Case 3 Results—Variable β step tracking. After a 30-second training phase, the
reference was tracked using GPC (a) and SBMPC (b). Both converge rapidly to the desired set
point and achieve low errors, maintaining good performance as the plant dynamics undergo abrupt
changes at time steps 50 and 100. The error plot (c) indicates that Adaptive SBMPC converges
more quickly than Neural GPC in response to these changes.
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CHAPTER 4

APPLICATION TO COMBUSTION CONTROL

4.1 Introduction

Energy policy and the rising cost of fossil fuels has highlighted the need for efficient and reliable methods

to control the combustion processes of power plants. Legislation that taxes or sets limits on carbon emissions

is becoming more common [46][61][3], which has increased demand for control systems that reliably meet

constraints on emissions outputs.

When controlling a combustion system, constraints on inputs and outputs are necessary in order to meet

power demands, ensure safe operating levels, or regulate environmental pollutants. For these reasons, the

industry’s need for handling these constraints has steadily increased, and Model Predictive Control (MPC) is

arguably the control methodology most suitable to handle them [51]. MPC uses an internal model that rep-

resents the system to be controlled, and produces a future sequence of control inputs and the corresponding

output trajectory that optimizes a cost function, subject to constraints on functions of the inputs and outputs.

Receding horizon MPC approaches use this model to predict several steps in the future while implementing

only the immediate next step.

MPC is commonly applied in simulations to power plants [9][47][38][23], and, for applications where

no closed-form model is available, is typically applied in conjunction with an identified system model.

Linear MPC techniques often use a Least-Squares, Gradient Descent, or Newton method to fit a linear

model to observed data [59]. Nonlinear MPC techniques, which are far less commonly used, often fit

a Neural Network, Neuro-Fuzzy, Nonlinear Polynomial, or other Nonlinear State Space model to predict

system behavior [60].

Due to environmental effects, normal wear, and fatigue, power plant combustion chambers can exhibit

time-dependent dynamic behavior. Furthermore, the addition of solar and wind power plants, which provide

intermittent power to the grid, has caused the duty cycle of traditional power plants to fluctuate more than

ever before. The neural network model form is suitable for modeling the nonlinearities and time variation,

which lead to suboptimal performance when they are ignored. The Neural Generalized Predictive Control

(Neural GPC) method [67][27] consists of a Back Propagation Neural Network (BPN) and Newton-Raphson
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cost optimization. It is best able to handle problems with nonlinearities and time variation among existing

NMPC methods because it balances speed of optimization with adaptive capability.

An analytical model for coal combustion has been derived [8]. This model has been used in a Single-

Input Single-Output (SISO) simulation of Gaussian Process NMPC [25], which requires a priori specifi-

cation of the plant’s dynamic equations and achieves rapid online computational speed, at the expense of

significant offline computation and a lack of robustness to plant changes. This research solves the same

problem in simulation using an adaptive algorithm that does not require prior knowledge other than the

order of plant dynamics. Furthermore, the control problem is extended to multiple inputs and outputs and

time-varying plant dynamics.

Chapter 3 of this dissertation presented an adaptive NMPC approach known as Adaptive Sampling

Based Model Predictive Control (Adaptive SBMPC) and contained a description of the algorithm, theory,

and SISO examples. The application in simulation to solve a relevant NMPC problem is given here in Part 2.

Results of this chapter include a comparison between Adaptive SBMPC and Neural GPC for the simulated

Multiple-Input, Multiple-Output (MIMO) combustion problem. The results are the first published for either

control method for a system which is both MIMO and time varying.

The chapter is organized as follows: Section 4.2 describes the plant and neural network identification

results using both RBF and BPN neural networks. Section 4.3 presents the control results of the combustion

simulations, including SISO, MIMO, and time-varying MIMO cases in Sections 4.3.1, 4.3.2, and 4.3.3,

respectively. Finally, Section 4.4 gives concluding remarks.

4.2 Combustion Plant and Neural Network Identification

A simulation of the application being studied, power plant combustion, was used to demonstrate both

Adaptive SBMPC and Neural GPC. The plant description of Section 4.2.1 is taken as ground truth, and the

dynamics described are initially unknown to the algorithms. The RBF and BPN neural network identification

algorithms are tasked with learning the plant behavior. In Section 4.2.2, results from the training phase are

given.

4.2.1 Description of the Plant

The PK 401 boiler, used for power generation of up to 200 megawatts, has a combustion process that

has been modeled by Čretnik [14]. For this research, two inputs and three outputs are considered. The first
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input, the air flow damper angle φ ∈ [0◦,90◦] determines the volume flow rate of air, Φ (m3/s), according to

the relationship

Φ =


Φmax

2 exp
(

φ−45
15

)
, 0◦ ≤ φ ≤ 45◦,

Φmax
2

(
2− exp

(
45−φ

15

))
, 45◦ < φ ≤ 90◦,

(4.1)

where Φmax specifies the air flow when the damper is fully open. This nonlinear damper-to-flow relationship

is used by Čretnik in [8]. Air is assumed to be composed of 79% nitrogen and 21% oxygen.

The second input is fuel mass rate Φ f ∈ [0.7,1.3] kg/s. Modifying these two inputs influences the

chemical concentrations in the flue gas exiting the boiler. The three gas concentrations of interest, xO2 , xCO,

xCO2 ∈ [0%,100%], are the outputs of the control system and change according to the equations

ẋO2 =
−xO2 (Φ+Φ f (Vd−VO)+21Φ−100VOΦ f )

V
, (4.2)

ẋCO =
−xCO

(
Φ+Φ f (Vd−VO)+1.866ax f

c Φ f

)
V

, (4.3)

ẋCO2 =
−xCO2

(
Φ+Φ f (Vd−VO)+1.866(1−a)x f

c Φ f

)
V

, (4.4)

where Vd (m3/kg) is the theoretical volume of gas produced by the combustion of 1 kg of fuel, VO (m3/kg)

is the theoretical volume of O2 needed for total combustion of 1 kg of fuel, a is the fraction of Carbon that

reacts to form CO, x f
C is the Carbon fraction of the fuel mass, and V (m3) is the chamber volume. The

numerical value of each of the parameters used in simulation is given in Table C.1 of Appendix C.

The concentration of xO2 is monitored as a metric of efficiency. For this particular boiler, we compare

xO2 to the value that is optimal for burning efficiency xO2,opt , a value that is prescribed in [15] as an empir-

ical function of Φ f . When the flue concentration is above optimal, the oxygen-rich reaction is burning at

excessive temperature, and energy is wasted via heat in the flue gas. In oxygen-deficient reactions, where

the flue concentration is below optimal, energy is wasted in the form of unburned fuel escaping in the flue

gas.

In order to consider the boiler’s environmental impact as well as its mechanical efficiency, the O2-only

analytical model used by Grancharova et al. has been extended to compute carbon monoxide (CO) and

carbon dioxide (CO2) concentrations as well. Both pollutants are regulated by the UN Kyoto Protocol as

well as by governments of individual nations, which tax excessive carbon emissions [16]. CO2 is the most

prominent and strictly-regulated greenhouse gas, and in proximity to humans, CO excess is harmful and

potentially fatal. While this research includes these two greenhouse gasses, other key pollutants such as

nitrous oxides (NOx) are not considered because their formation process is not well understood [32].
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Figure 4.1: Single Output Neural Network ID comparison. Each neural network is trained with
sequential input and output data during the training phase. Prediction error is based only on
prediction of xO2.

4.2.2 Neural Network Identification

Identification of the nonlinear system dynamics was achieved by training both RBF and BPN neural

network models. The MRAN identification algorithm [73], described in Part 1, was used to train the RBF

network, while the more standard back propagation adaptation rule [76] was used to train the BPN network.

A key distinction between the two identification approaches is that for BPN, a fixed network size must be

assumed, while the RBF adds new hidden units when needed to model newly seen data.

For this simulation, the BPN network was initialized with random parameters for each hidden unit, and

the RBF network was initialized with no hidden units. To determine the network size for the BPN network,

system identification simulations were run with integer network sizes between 1 and 400 hidden units. The

network size of 39 hidden units produced the smallest cumulative error, so this network size was assumed

for the cases presented. The ability to learn the size of the network while the identification algorithm runs is

an advantage of MRAN learning over back propagation.

The simulation was run on one CPU core of a 2.0 GHz quad-core AMD laptop with 6 gigabytes of

RAM. All algorithms were implemented in C.

During neural network training, a sequence of white noise over the allowable range for each input was

provided as the open loop excitation signal. These signals as well as the measured outputs that result from

the inputs were sequentially passed to the identification algorithms. Identical sequences were used for the
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Figure 4.2: Multiple Output Neural Network ID comparison. Identification error is computed
based on predictions for the three outputs, xO2, xCO, xCO2. For this case, the BPN adaptation
converges more slowly, but two identification methods eventually attain comparable prediction
error.

BPN and RBF networks. Comparison Figs. 4.2.2 and 4.2.2 plot the error metric

epred(k) =
100

∑
i=0
‖y(k− i)− ŷ(k− i)‖, (4.5)

where ‖ · ‖ denotes the Euclidean norm, on the vertical axis and the CPU time on the horizontal axis. While

in the single output case, Fig. 4.2.2, the RBF network predicts with lower error than the BPN network, the

prediction error between the two is comparable in the three output case, Fig. 4.2.2.

4.2.3 Neural Network Tuning

The process of tuning the MRAN algorithm includes the tuning of the Extended Kalman Filter parame-

ters, q, p0, and R. These were tuned according to the procedure given in [48]. Next, the error thresholds, E1,

E2, and, E3, and the pruning thresholds, δp,1 and δp,2, were given values of 0, resulting in automatic addition

of a hidden unit, with no pruning possible, at each time step. The remaining parameters were set with an

initial guess based on parameters used in another application of MRAN [73]. From this starting point, the

thresholds were systematically increased by monitoring the error data values of e1, e2, and e3 during the

execution of MRAN with training data. These initial values result in rapid growth of the number of hidden

units. The network was then tuned to slow this growth. After each run, each error threshold parameter

was modified by computing the 20th percentile of the corresponding error data. This process was repeated
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until the resulting post-training size of the neural network decreased to about 200. This size represented an

acceptable trade-off between prediction accuracy and computational time. Likewise, the pruning thresholds,

δp,1 and δp,2, were modified using the 1st and 1
10

th percentile values of e2. The resulting tuning parameter

choices are given in Table D.1 of Appendix D.

The tuning parameters for the BPN identification algorithm, given in Table D.2 of Appendix D, were

chosen through an iterative process, beginning with an initial guess based on parameters α , η , and L that

were used in another application [48]. From this starting point, the parameters were modified and used for

an identification simulation. The parameter configuration yielding the smallest overall prediction error was

retained. Since BPN requires outputs scaled within 0 and 1, the scaling multiplier and biases were selected

to transform the outputs into the range [0,1], based on the minimum and maximum y values observed in the

training data. The number of hidden units NH was selected by running the BPN algorithm on the training

data for each NH between 1 and 400 and selecting the value resulting in the lowest prediction error.

4.3 Control Results

In order to clearly compare the control results, Adaptive SBMPC was implemented not only in the

typical configuration, using the RBF network, but also with the BPN network used by Neural GPC. These

two implementations are here referred to as SBMPCRBF and SBMPCBPN . Three cases are presented: a SISO

problem, a MIMO problem, and a time-varying MIMO problem. The two control inputs and outputs are

u1 = φ , u2 = Φ f , (4.6)

and the three plant outputs are

y1 = xO2 , y2 = xCO, y3 = xCO2 . (4.7)

The second input, fuel mass rate Φ f , is prescribed over time as an exogenous input in Case 1, but

specified by SBMPC or GPC as a control input in Cases 2 and 3. The outputs to be controlled are the flue

volume concentrations of oxygen, carbon dioxide, and carbon monoxide.

For each trial, 120 seconds of processor time was used to initially train the neural network. During this

phase, inputs consisted of uniform white noise within the constrained range for each input, u1(k) ∈ [0◦,90◦]

and u2(k) ∈ [0.7,1.3]kg/sec. The MRAN learning algorithm starts with an empty neural network and learns

the network size during this training period. The back propagation network, initialized with random hidden

unit parameters between -0.5 and 0.5, assumed a fixed network size, which was provided a priori. The same
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prediction horizon N = 4 and control horizon NC = 2 were used for both SBMPC and GPC. The complete

list of tuning parameters is given in Appendix D.

4.3.1 Case 1: Time-Invariant SISO Problem

The first simulated case is the problem addressed by Grancharova et al. in Problem P3 of [25], in which

only the mechanical efficiency of the burner is considered for optimization. In this case, Φ f is specified

externally, and only a single control input φ is used. The control task is to seek the concentration of oxygen

xO2 in the flue gas that is optimal for burning efficiency xO2,opt, a value that is prescribed in [15] as an

empirical function of Φ f . The cost function being optimized,

C =
N−1

∑
i=0

Cmec(i) (4.8)

has a single quadratic cost term

Cmec(i) =
(
xO2(k+ i)− xO2,opt(k+ i)

)2
, (4.9)

and control signals are determined by sampling inputs in bounded increments such that

−0.5◦ ≤ ∆u1 ≤ 0.5◦ (4.10)

in any two consecutive time steps.

After the 60-second learning phase for Case 1, the number of RBF hidden units had converged to 19. The

number of hidden units remained constant throughout the control phase of the simulation. SBMPC and GPC

both successfully used the learned models to track the reference signal. Figure 4.3 shows results from three

run configurations and presents the results when Neural GPC (a), SBMPCRBF (b), and SBMPCBPN were

used. SBMPC demonstrated more rapid convergence for the SISO case, while requiring less computation

time as seen in Table 4.2. The neural network performance was similar, as seen by comparing SBMPCRBF

and SBMPCBPN plots, although SBMPCRBF achieved lower overshoot, due to initially larger prediction

errors of the BPN network.

4.3.2 Case 2: Introducing a Carbon Penalty Cost

Case 2, and extension to three outputs, considers greenhouse gases CO and CO2 in order to control

environmental impact of the power plant. The updated cost function is

C =
N−1

∑
i=0

Cenv(i)+Cmec(i), (4.11)
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(a)

(b)

(c)

Figure 4.3: Case 1 Results—Step Tracking.The reference input was tracked using Neural GPC (a),
SBMPCRBF (b), and SBMPCBPN (c). The neural network type affects overshoot due to larger BPN
prediction errors. SBMPC convergence, however, is still more rapid than that of GPC regardless
of neural network choice.
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where

Cenv =CCO +CCO2 (4.12)

and

CCO =

{
0, xCO < LCO,

(xCO−LCO)PCO, xCO ≥ LCO,
(4.13)

CCO2 =

{
0, xCO2 < LCO2 ,

(xCO2−LCO2)PCO2 , xCO2 ≥ LCO2 .
(4.14)

It introduces terms that linearly penalize pollutant levels above the respective thresholds LCO2 and LCO with

penalty slopes PCO and PCO2 . The limitations on CO and CO2 are implemented as soft constraints via these

linear penalties rather than hard constraints. This is done because initial conditions and time variation of

the plant yield states in violation of the desired range of outputs. Starting from this initial condition, the use

of hard constraints would allow no feasible solutions. Instead, a large penalty was placed on outputs above

desired levels to so that optimal control strategies must quickly bring the outputs into compliance.

For Cases 2 and 3, there are two control inputs, air inlet damper angle φ and fuel rate Φ f . In addition

to the constraints on the damper angle, fuel rate is constrained on {umin,umax} = {0.7 kg/s, 1.3 kg/s}. A

saturation function,

uSAT (u) =


umax, u < umin,

u, umin ≤ u≤ umax,

umax, u > umax,

(4.15)

is applied to the control signals, so that whenever either of the constraints is violated, the limiting value is

passed to the plant instead. The reference trajectory xO2,opt, a sinusoid, simulates the requirement of power

plant boilers to meet demands that vary over time.

For case 2, the length of the training phase was 120 seconds. After the training phase, the number of

hidden units converged to 199. By the end of the simulation, the number of units had increased to 201.

The data for the second case, shown in Figures 4.4, 4.5, and 4.6, gives the Case 2 results for Neural

GPC, SBMPCRBF , and SBMPCBPN . CO levels, which remained at zero throughout the control phase, are

not plotted. Although CO was generated during the training phase, by nature of the combustion process the

constraint on CO2 is the more stringent of the two constraints, and meeting the constraint on CO2 forced the

CO level to zero. In Figure 4.4, Neural GPC fails to track the reference due to an input constraint violation,

which occured because GPC produced a fuel rate that was out of bounds. The value u2,SAT is input to the
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(a) (b)

(c) (d)

Figure 4.4: Neural GPC Case 2 Results. Penalties on CO and CO2 are introduced and plots
of inputs dampler angle (a) and fuel rate (b), and outputs oxygen concentration (c) and carbon
dioxide concentration (d) are given. The shaded upper and lower regions on the input plots are
infeasible regions beyond the input constraints. The value u2,SAT is input to the plant when the
fuel rate constraint violation occurs.
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(a) (b)

(c) (d)

Figure 4.5: SBMPCRBF Case 2 Results. The performance of Adaptive SBMPC is shown. Plots
of inputs dampler angle (a) and fuel rate (b), and outputs oxygen concentration (c) and carbon
dioxide concentration (d) are given. The shaded upper and lower regions on the input plots are
infeasible regions beyond the input constraints.
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(a) (b)

(c) (d)

Figure 4.6: SBMPCBPN Case 2 Results. The performance of SBMPC using BPN identification is
shown. Plots of inputs dampler angle (a) and fuel rate (b), and outputs oxygen concentration (c)
and carbon dioxide concentration (d) are given. The shaded upper and lower regions on the input
plots are infeasible regions beyond the input constraints.
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Table 4.1: Time Variation of Simulation Plant Dynamics

Time (s) Description Quantitative Changes
0 to 5000 Normal boiler operation None
500 to 1000 Constricted air flow Φmax is 36% smaller
1000 to 1500 Damp fuel H2O added to comprise 5% of fuel mass
1500 to 2000 Smaller chamber volume 15% reduction in volume

plant when the fuel rate constraint violation occurs. Because of this saturation of u2, tracking performance

is poor as u1 alone lacks the control authority to track the reference. The damper angle alone lacks the

control authority to track the reference trajectory. SBMPCRBF converges with small error and satisfaction

of output constraints. Prediction errors are rapidly corrected in the first few time steps of the control phase.

SBMPOBPN network similarly achieves overall constraint satisfaction, but the tracking is less effective due

to the prediction error of BPN. The execution time of SBMPORBF was improved over that of SBMPOBPN ,

as seen in Table 4.2, which is primarily due to the smaller number of graph node expansions required when

model predictions are more accurate. This time is also directly proportional to number of hidden units

required to represent the system. The MRAN algorithm converged to 201 hidden units, whereas the fixed

number of hidden units for the BPN network was 39.

4.3.3 Case 3: Control System Adaptation Under Changing Dynamics

The third simulation case demonstrates the versatility of the adaptive algorithms as changes in plant

dynamics are introduced that require active model updates. The online identification algorithms are able to

quickly adjust to changing plant behavior, either by back-propagation (BPN) or the EKF optimization of

MRAN (RBF).

In the simulation, plant dynamics are applied as step parameter changes at the beginning of each 500

second interval of simulation time. The nature of the changing boiler dynamics is presented in Table 4.1.

Each change is from the normal dynamic behavior, such that the changes mentioned are in effect during the

interval but revert back to the normal values.

For case 3, the length to the training phase was 120 seconds. After the training phase, the number of

hidden units converged to 199. By the end of the simulation, the number of units had increased to 205.

The data for the third case, shown in Figures 4.7, 4.8, and 4.9, indicates that after each shift in plant

dynamics, the neural networks are adapted and prediction errors were corrected. In Figure 4.7, Neural

GPC exhibited significant and sustained tracking error due to the u2 input constraint violation that was
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(a) (b)

(c) (d)

Figure 4.7: Neural GPC Case 3 Results. With plant changes occuring every 500 seconds, the
model adapts and control inputs are updated simultaneously. Plots of inputs dampler angle (a) and
fuel rate (b), and outputs oxygen concentration (c) and carbon dioxide concentration (d) are given.
The shaded upper and lower regions on the input plots are infeasible regions beyond the input
constraints. The value u2,SAT is input to the plant when the fuel rate constraint violation occurs.
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(a) (b)

(c) (d)

Figure 4.8: SBMPCRBF Case 3 Results. SBMPCRBF adapts to the plant changes at 500 second
intervals. Plots of inputs dampler angle (a) and fuel rate (b), and outputs oxygen concentration (c)
and carbon dioxide concentration (d) are given. The shaded upper and lower regions on the input
plots are infeasible regions beyond the input constraints.
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(a) (b)

(c) (d)

Figure 4.9: SBMPCBPN Case 3 Results. SBMPCBPN adapts to the plant changes at 500 second
intervals. Plots of inputs dampler angle (a) and fuel rate (b), and outputs oxygen concentration (c)
and carbon dioxide concentration (d) are given. The shaded upper and lower regions on the input
plots are infeasible regions beyond the input constraints.
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mentioned in Section 4.3.2. SBMPCRBF achieved similar tracking behavior and did not violate the input

constraints. Similar results were produced by SBMPCBPN , and no input constraints were violated. After

each plant change, the neural networks quickly adapt to decrease the prediction error and, as in Case 2, the

improved neural network prediction accuracy leads to lower computational cost for SBMPCRBF compared

to SBMPCBPN .

4.3.4 Run Time Statistics and Real Time Feasibility

The computational times presented in Table 4.2 were measured during simulation execution for each of

the three cases. The timing period begins before the SBMPC or GPC control routine and ends after control

routine has computed the next control input. Median and worst case performance over each simulation run

are presented. Benchmarking statistics of median and longest CPU times are given. The longest CPU times

reflect the transient solve times that occur initially, and the median CPU times indicate the computation

cost after these transient periods. The control period for this application is 10 seconds, so the measured

computational times are all within feasibility requirements for real time implementation. The real time

requirement was met by each algorithm, but compared to GPC, SBMPC achieved better overall computation

performance in addition to better tracking performance. Either algorithm could be tuned to run more quickly,

but this comes at the expense of diminished tracking performance.

Table 4.2: Adaptive SBMPC Run Time Statistics

Median CPU Times

Plant Configuration
Control Algorithm

N. GPC SBMPCRBF SBMPCBPN

Case 1 0.667 MFLOPS 0.500 MFLOPS 0.167 MFLOPS
Case 2 297 MFLOPS 97.2 MFLOPS 175 MFLOPS
Case 3 295 MFLOPS 132 MFLOPS 134 MFLOPS

Longest CPU Times

Plant Configuration
Control Algorithm

N. GPC SBMPCRBF SBMPCBPN

Case 1 628 MFLOPS 137 MFLOPS 325MFLOPS
Case 2 1300 MFLOPS 297 MFLOPS 353 MFLOPS
Case 3 1225 MFLOPS 787 MFLOPS 1287 MFLOPS
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4.3.5 Tuning the Control Algorithms

Compared with the neural network algorithms, the NMPC algorithms involved less effort to tune. For

both SBMPC and GPC the prediction horizon N = 4 was chosen large enough to limit the overshoot of the

transient behavior of the controlled system. For both algorithms the control horizon NC = 2 was chosen to

keep the computations small.

After these were fixed, the only remaining SBMPC tuning parameter is the branchout factor B. This

parameter allows a trade-off between low computational cost (small B) and low tracking error (large B). The

value B = 60 was selected after trial simulations with various values.

In order to tune the Newton solver of GPC, a solver tolerance ε , iteration limit Imax, input constraint

sharpness s, and damping factor λ were selected. The parameters ε and Imax allow for a trade-off between

computational cost and tracking error, so they were selected to match the Case 1 steady state tracking error

performance of SBMPC. The parameters s and λ , if not properly selected, led to instability of GPC. The

damping factor was selected based on trial and error, which was a tedious process because this search

spanned many orders of magnitude before producing stable results. The value of s = 10−12 suggested in

[67] produced stable solver results. Smaller values also produced stable results, while larger values led to

instability. Even though the solver results were stable in the sense that the Newton solver converged to finite

values, no tuning configuration was found that avoided an input constraint violation under the conditions of

Cases 2 and 3.

4.4 Summary

Adaptive SBMPC, an adaptive approach to nonlinear model predictive control, is presented and applied

in simulation to a combustion control problem from literature. For comparison, the nonlinear dynamics of

coal combustion within a commercial boiler were learned and controlled using Neural GPC as well as Adap-

tive SBMPC. SBMPO was demonstrated as an efficient nonlinear optimization was performed and close

reference tracking was achieved. Strengths of SBMPO, including computational speed, ease of tuning, and

compatability with any model, were demonstrated in a MIMO nonlinear application. A direct comparison of

the RBF and BPN neural network identification approaches is given using SBMPO optimization with each

neural network type. The major strengths of the RBF network are the ability to modify the neural network

structure during controller operation and the ability to learn plant behavior without the a priori specification

of network size.
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The original problem was extended to consider additional outputs and an additional control input as

well as time-varying plant dynamics. Adaptive SBMPC was shown to be capable of rapid adjustments to

changes in plant behavior and efficient nonlinear optimization for MIMO systems. The achieved execution

times were, in the worst case, well under the ten-second sampling interval appropriate for feedback control

of combustion.

For the purpose of comparison, results were presented for a combustion system identification and con-

trol problem. The MIMO system was identified using BPN and RBF neural networks and the Adaptive

SBMPC and Neural GPC control systems were used to perform NMPC. The results presented in Case 3

are the first control results of a time-varying MIMO plant using Neural GPC as well as the first control

results for SBMPC implemented with the BPN neural network model. The results indicate that both neural

network structures are capable of representing the nonlinear system and both control methodologies easily

handle the SISO control case. When the MIMO problem was considered, Neural GPC tended to violate the

input constraints, which led to poor reference tracking. By design, Adaptive SBMPC cannot violate input

constraints and good tracking results were achieved using both the RBF and BPN neural network structures.

Adaptive SBMPC generally achieved better computational times and in the worst case did not exceed the

control period of 10 seconds.

One potential improvement to Adaptive SBMPC, the learning of A∗ search heuristics for general non-

linear systems, which would enable further computational improvements, are planned as future work. This

improved implementation will exploit past optimization cost information to speed up subsequent optimiza-

tions for the same plant. Further computational improvement is possible using parallel computations. During

SBMPO execution, the majority of the the computational effort is spent on expansion of nodes. These expan-

sions may be computed in parallel in order to leverage the capabilities of multi-core CPU or GPU hardware.

These computation improvements will allow the application of Adaptive SBMPC to larger systems as well

as systems with fast real-time computation requirements.
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CHAPTER 5

APPLICATION TO FLOW SEPARATION CONTROL

5.1 Introduction

For decades, flow separation has been of particular interest in engineering applications for which im-

proved aerodynamic performance is desired. Control of flow separation, both active and passive, is a key

component of existing aviation technology. Passive control methods, such as leading edge surface rough-

ness or the inclusion of vortex generators, rely on stationary structural components to produce a reduction or

delay in separation effects. These techniques typically produce an early transition to turbulence or stream-

wise vortical structures, each of which has been shown to mitigate separation [40]. The effectiveness of

passive techniques is limited in comparison with active techniques, which rely on powered mechanisms to

alter the flow, especially when conditions different from the design point are considered [10]. These types

of off-design conditions are common for aeronautical systems that are deployed in diverse environments,

including micro-aerial vehicles and full-size aircraft that perform maneuvers.

The significant increase in capability and decrease in cost of computing hardware has led to the fea-

sibility of active control techniques of increasing sophistication. Both open-loop and closed-loop control

schemes have been applied to flow control problems and there is evidence that closed loop approaches offer

significant improvement in performance over open-loop control [55][34].

Several areas of flow control research, including suppression of cavity flow resonant tones and mitigation

of flow separation, have advanced rapidly in recent years as new technologies have both created demand

for and expanded the capabilities of such systems. The study of cavity flow control has demonstrated

that mathematical techniques such as Proper Orthogonal Decomposition (POD) and model reduction are

effective tools for controlling aerodynamic systems [50][20] under limited Reynolds number conditions and

a fixed angle of attack. While these studies incorporated flow visualization and analysis efforts to produce

nonlinear models that are effective for developing open-loop control strategies, it has been more practical

to linearize these models for the sake of computational efficiency when implementing real-time closed loop

control [55][34].
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Frequency domain methods have been applied to model and control the flow dynamics in flow control

and related applications [49][12][42]. Nonlinear POD methods similar to those applied to cavity flow have

also been used for flow separation [22]; however, these models exhibit little robustness and have only been

used to perform open-loop control. Actuator development has also been key to the recent advances in the

field of flow separation control. Both synthetic jet unsteady actuators [71][70] and steady microjet actuators

[12][4] have been effective in closed-loop separation control experiments. Because of the advantage of

high momentum capability with low power requirements [41], microjet arrays are used as actuators in this

research. These actuators are capable of both pulsed and steady blowing.

Nonlinear model predictive control (NMPC) has been proposed for flow control, but “a huge numerical

burden” is listed as a drawback of such methods [54]. The method presented in this dissertation, Adaptive

Sampling Based Model Predictive Control (Adaptive SBMPC) [64], is a new paradigm for NMPC that

is computationally efficient. Adaptive SBMPC differs from past adaptive, closed-loop approaches to flow

control by identifying a nonlinear model for control. This chapter provides the experimental results, Particle

Image Velocimetry (PIV) visualization, and detailed analysis of the flow separation control problem. The

identification and control processing is executed in real time, demonstrating the potential of this method for

in-flight application.

5.1.1 Control Objective

The primary objective of this research is to maximize the lift coefficient CL by means of delaying the

onset of separation as well as controlling flows with initially-separated boundary layers. The experimental

model is not instrumented with sensors capable of approximating the drag coefficient CD, but the lift-drag

ratio CL/CD is typically also improved when flow separation is mitigated and CL increases. Given a discrete

time series of multiple sensor measurements located along an airfoil’s chord (inputs), the proposed research

aims to determine an optimal series of microjet pressure signals (outputs), maximizing the lift performance

of the airfoil. The control system should achieve this task for a broad range of steady or dynamically-

prescribed Reynolds numbers or angle of attack parameters. This is to be accomplished without direct

measurement of either parameter and without the modification of tuning parameters.

48



Figure 5.1: Sampling Based Model Predictive Control Summary. The algorithm discretizes the
input space and makes model-based state predictions, x̂k+ j, in order to minimize a cost function.

5.2 Control Method

As a means of solving Model Predictive Optimization problems without computing gradients, Sampling

Based Model Predictive Optimization (SBMPO) has been developed and implemented on both simulated

and experimental platforms [64][63][19][18][1]. One key advantage of SBMPO is the ability to find globally

optimal solutions, while other methods that rely on linearization are likely to converge to locally minimum

solutions. A second advantage, computational efficiency enables the use of SBMPO to solve real time

NMPC trajectories. When SBMPO is combined with a neural network model of system behavior, the

overall method for identification and control is called Adaptive Sampling Based Model Predictive Control

(Adaptive SBMPC). SBMPO may be applied to solve the nonlinear optimization problem,

min
{u(k),...,u(k+N−1)}

N−1

∑
i=0

C (y(k+ i+1)− r(k+ i+1)) , (5.1)

subject to the nonlinear state space equations,

x(k+ i) = g(x(k+ i−1),u(k+ i−1)), (5.2)

y(k) = h(x(k)), (5.3)

and the constraints,

x(k+ i) ∈ X f ree ∀ i≤ N, (5.4)

u(k+ i) ∈ U f ree ∀ i≤ N, (5.5)
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Figure 5.2: SBMPC Search Graph. The graph is built by expanding the most promising node to
generate B child nodes. Each child node is assigned an input sample, which is propagated forward
through the model to predict a state for that node. The potential cost of reaching that state is used
to prioritize the nodes and select the most promising candidate for the next iteration of expansion.

where the cost function C(·)≥ 0, r(k) is the reference input, and X f ree and U f ree respectively represent the

states and inputs that do not violate any of the problem constraints. SBMPC is described in Fig. 5.1 and

is easily applied to both linear and nonlinear models, combining techniques for sampling the input domain

with an efficient graph search method such as A∗.

5.2.1 Sampling the Input Domain

The field of path planning in robotics has seen recent innovations that have used sampling techniques

[39][44]. SBMPC involves the sampling of the space of allowable inputs. Halton sampling, in particular,

is a method based on the low-discrepancy Halton sequences that has been shown to provide representative

sample sets consisting of fewer points than sets generated using pseudo-random numbers or regular grids

[56][11]. Satisfaction of input constraints is automatic because it is the allowable inputs that are sampled.

Also, since the inputs are propagated forward through the model, no inversion of the model is needed.

5.2.2 The Graph Search

Using the current state and input samples, several new nodes are computed by propagating the model

and adding to a graph with tree connectivity, as illustrated in Fig. 5.2. The branchout factor B, a tuning

parameter of the algorithm, determines how many child nodes are generated when a particular parent node

is expanded.

The uniform sampling density typically used for SBMPC may be transformed in order to achieve greater

relative sampling density in a desired region of the input domain. In order to preserve input constraint

50



satisfaction, the transformation must guarantee that no valid inputs are mapped to invalid inputs. Using a

nonuniform sampling density can improve the performance of SBMPC by sampling large input changes

more coarsely while sampling small input changes more finely. This finer sampling allows the trajectory to

converge with small steady-state errors.

The Halton sequence algorithm, which is potentially used thousands of times at each time interval when

the SBMPC routine is called, was a major contributor to the total runtime of SBMPC. During benchmark

testing of C code on multiple machines, batches of 1 million elements of a Halton sequence were computed,

and then precomputed batches of equivalent size were loaded from a binary file. The median CPU time

required to compute the samples was 210 milliseconds, while the median time required to load the precom-

puted values was 1 millisecond; therefore, computing these samples offline and storing them in a binary file

enables the run-time code to execute much faster while yielding identical results. The offline computation

of these Halton samples is a contribution of this dissertation and reduces the run-time computational cost of

SBMPC.

5.2.3 Nonlinear Modelling

Previous adaptive flow separation research has aimed to capture the nonlinear dynamics of the flow

field by identifying an instantaneously linearized model that varies with time. The optimization of a linear

model has the advantages of speed and simplicity over those that consider nonlinear models. The unmodeled

dynamics, however, can cause such techniques to be suboptimal and even unstable.

Nonlinear POD Methods. Proper Orthogonal Decomposition (POD) techniques have been used to

identify models in the form of polynomial difference equations [65][36] that are sufficient for open loop

control design [50]. However, due to computational expense, closed loop flow control implementations

have been limited to linear models [54]. Although SBMPO has the ability to optimize inputs to a POD

model, POD models are steady state in nature and do not capture the transient behavior or hysteresis effects

that are necessary to control dynamic stall.

SBMPO Compatibility with More General Models. A primary advantage of SBMPO over alterna-

tive optimization methods is that this technique has no intrinsic preference for linear models over nonlinear

models, and the algorithm does not need to compute closed-form gradients. This allows SBMPO to be

applied to a more general class of systems than could be handled by previous methods. Even systems with

strong nonlinearities or non-differentiable functions can be optimized using SBMPO.
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Nonlinear Neural Network Methods. The use of an artificial neural network allows nonlinear models

to be identified in a general manner by composing a function that computes future outputs based on past

states. For this application the state vector,

xk = (yT
k−1,y

T
k−2, ...,y

T
k−ny

,uT
k−1,u

T
k−2, ...,u

T
k−nu

)T , (5.6)

consists of nu prior plant inputs and ny outputs. The form,

yk = f (yk−1,yk−2, ...,yk−ny ,uk−1,uk−2, ...,uk−nu)≡ F(xk), (5.7)

is known as as a nonlinear autoregressive exogenous inputs (NARX) model form because it is analogous

to the autoregressive exogenus inputs (ARX) form for linear models. If F(xk) were a linear function, the

equation would simplify to an ARX formulation,

ŷk = Axk, (5.8)

with the matrix A of constant coefficients.

Figure 5.3: The layout of a sample RBF network consists of a hidden layer containing one hidden
neuron for each distinct state pattern that the algorithm encounters. Collectively these pattern
state vectors make up a basis with which all system dynamics are modeled. With enough of these
hidden neurons the network is able to match arbitrarily complex nonlinear behavior.

While there are many ways to construct the nonlinear function F(xk), neural network methods construct

this function as a composition of simpler functions called neural units, which can be arranged in series and

parallel to form a network. The network implemented in this research has a two-layer structure first proposed

by Platt [58]. This Resource Allocation Network (RAN) has for its first layer, a collection of neural units that
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respond in parallel when state xk is nearby (according to the Euclidean norm) to a previously seen pattern.

An extension of RAN, the Minimal Resource Allocation Network (MRAN)[73], is used in this research.

MRAN adds a pruning step that keeps the neural network size reasonable by discarding neural units with

insignificant contribution to the output. The Gaussian function,

φi = exp
(
−‖xk−µ i‖2

σ2
i

)
, (5.9)

is selected for the first layer because it achieves the desired radial symmetry using a simple computation that

has closed-form derivatives. The second layer combines these Gaussian outputs in a weighted sum, yielding

the Radial Basis Function (RBF) representation,

y = F(xk) = a0 +
N

∑
i=1

aiφi. (5.10)

For each of the N neural units, the MRAN algorithm must specify a basis vector µi, a Gaussian width

σi, and weight coefficients ai. The detailed specification of the MRAN algorithm is given in Chapter 3.

5.3 Formulation of Lift Based Performance Function

Earlier approaches to adaptive flow separation control have passed one or more pressure transducers

to the controller as elements of the system output vector y and select a single transducer signal as the

controller’s performance signal z [70]. However, often it is desirable to define a scalar performance function

using more than one sensor. Unfortunately, due to the complexity of fluid dynamics, it is not obvious how

each sensor contributes to the performance function. Rather than minimizing the pressure fluctuation at

some selected sensor, this paper seeks to minimize a physics-based performance variable that incorporates

the pressure signals from all sensors. To do this, it is necessary to approximate the aerodynamic pressure

force vector based on a set of pressure transducer measurements.

For typical aerodynamic applications, an airfoil’s efficiency is measured by the lift-to-drag ratio L/D

that is achieved during operation. Ideally, this research aims to develop a performance function that may

be used to optimize L/D, allowing for dynamic flow conditions that are unknown a priori. To perform

optimal control of separation over an airfoil, it is desirable to attain a performance function that has its

minimum where L/D, or equivalently the ratio of normalized quantities CL/CD, is optimized. Additionally,

this mininmum should be unique in parameter space in order to avoid convergence to a local minimum. The

equations that describe the pressure contribution to the lift and drag coefficients,
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Figure 5.4: XFOIL Simulation of NACA 0025, 6 degrees, Re = 100,000.

CL =
2
∮

psin(θ)dA
ρU∞

2bc
(5.11)

and

CD =
2
∮

pcos(θ)dA
ρU∞

2bc
, (5.12)

involve pressure integrals over the airfoil surface, which are not directly evaluated in experiments because

the integral requires unrealistic sensor resolution. Let θ , illustrated in Fig. 5.4, represent the angle between

the airfoil’s local surface normal and the free stream velocity. Useful normalization to to the lift and drag

coefficients is achieved by dividing the force quantities by a characteristic force quantity, 1
2 ρU∞

2bc, where

ρ is the flow density, U∞ is the free stream velocity, b is the span, and c is the chord length. As long as we

can show that the pressure distribution being integrated is well-behaved, it is more practical to approximate

these integrals with their corresponding summations using a discrete number of sensors. This approximation

is the basis of the lift based performance function presented in this paper.

Figure 5.4 is a pressure distribution for turbulent flow that was obtained computationally using a numeri-

cal panel method that accounts for viscosity for the transitional range Reynolds number 105. The simulation

assumed incompressible flow and thus applied low Mach number flow dynamics. By physical intuition, one

observes three features of the pressure distribution, labeled in Fig. 5.4: (1) negative pressure gradient due to
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Figure 5.5: Airfoil Microjet Array and Pressure Transducer Schematic.

the acceleration caused by the impeded flow, (2) locally maximum positive pressure locations correspond-

ing to the two stagnation points (fore and aft), and (3) apparent discontinuity on the top surface, indicating

early stages of flow separation at the rear of the airfoil. Inspecting this and many other pressure distribution

plots has led to some key observations. First, the surface pressure will never exceed the free stream stag-

nation pressure; this bounds the pressure distribution from above. Additionally, the surface pressure will

be bounded from below by the solution of the potential flow (inviscid case, Re→ ∞), which can be solved

analytically by using a conformal mapping. Lastly, the gradient ∂ p
∂x is bounded as long as we consider in-

compressible Mach numbers (no shocks). Furthermore, the separation point and the high turning angles at

the leading edge produce the largest gradients along the chord.

As a result of these observations, it is hypothesized that a limited number of discrete pressure measure-

ments can be used to compute an approximation of aerodynamic forces that is sufficiently accurate to use as

a control feedback variable. The aerodynamic pressure force is by definition a path integral of the pressure

normal vectors around the surface of the airfoil. As described in Eqs. (5.11) and (5.12), this vector can be

decomposed into two components: lift, which is normal to the free stream, and drag, which is parallel to

the free stream. Note that this is only one of the components comprising the total drag force since shear

force must also be accounted for. It is assumed that pressure data alone will provide a sufficient estimation

for separation control purposes. This assumption is justified by the data presented in Appendix E, which

indicates that points of maximal lift and points of maximal L/D are coincident for transitional Reynolds

numbers.

An approximation of lift that is suitable for control purposes must practically preserve the global maxi-

mum of the actual lift quantity. The design of Fig. 5.14 is based on the hypothesis that four pressure sensors
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(marked P1 through P4) provide sufficient resolution to preserve the global maximum. An additional desired

trait of a lift based performance function is that the function is positive definite about the optimal (design)

point in flow condition space and that in its time derivative, it satisfies the negative definite condition of a

Lyapunov function. This behavior is important because it permits control of a nonlinear system to converge

to the optimal point while operating over a range of conditions.

Proposed here is a performance function along with validating results from both simulation and exper-

imental data. Using four pressure sensors located along the airfoil center chord, a lift approximation is

obtained in the following manner: take a weighted average of the calibrated pressure signals using sin(θ) at

each transducer location as a weighting function. Note that θ , the normal angle relative to the freestream,

depends on both airfoil geometry and angle of attack. For this formulation, we assume that airfoil geometry

angle (denoted θi relative to the chord axis) is known but angle of attack (α) is unknown, as this parameter

would change during typical operation. The sine function in the lift integral (5.11) has argument θ = θi−α .

We assume a constant value for α , which introduces a tolerable error to the summation weights. Since flow

separation is the phenomenon to be controlled, the 11.5 ◦ average separation angle (αsep) for the NACA 0025

is a reasonable choice for the constant angle of attack parameter. For the range of angles of attack consid-

ered in this study (α ∈ [0 ◦ 16 ◦]) the error induced may be evaluated directly by comparing sin(θi−α) with

sin(θi−αsep) for each of the four sensors. This calculation has been performed and in Fig. 5.6 is expressed

as percent error for the computed weight of each sensor.

For the assumed range of flight conditions, Fig. 5.6 reveals we may ignore variations in the angle of

attack when evaluating these weights with a penalty in accuracy of less than 7%. More importantly, the

airfoil geometry component, which is known a priori, captures what an intuitive physical understanding of

the problem would suggest: pressure sensors toward the leading edge, which are more vertically oriented,

will provide more information about lift and less information about drag. Conversely, the rear sensors have

a greater lateral component and therefore give a better indication of pressure drag than do their upstream

counterparts. When evaluating the performance function, only the lift approximation is used because the

drag approximation is subject to higher uncertainty and the changes in the lift coefficient alone are a good

indicator of separation effects. Although only lift is accounted for in the design of the performance function,

comparisons to the full L/D quantity have been made in validation, and the performance function approx-

imates the shapes of these curves adequately well (see plots in Appendix E). XFOIL simulation results

confirm that there is little to no difference in the optimal lift point and the optimal L/D point in each angle
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Figure 5.6: Percent errors when angle approximation α = αsep is used.

of attack series. The Lift-Approximating Function, Zli f t , and the Lift Based Performance Function, Vli f t ,

may be computed as

Zli f t =
N

∑
i=1

wi sin(θi−αsep)pi, (5.13)

Vli f t = (Lmax−Zli f t)
2, (5.14)

where weights wi appear in the summation to approximate the integral using N trapezoidal regions based on

the pressures measured at each sensor pi.

5.3.1 Lift Based Performance Function Validation Results

The results of the XFOIL analysis as well as some experimental validation are presented in this section.

The XFOIL program solves viscous flow around an airfoil using an iterative panel method and turbulence

modeling. The program is mainly used for optimal airfoil design because it produces high-fidelity lift

and drag predictions. Experimental data has also been used to further validate the analytically derived

performance function.
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Figure 5.7: Vli f t for lower Reynolds numbers, evaluated from simualated pressures.

Simulation Results. To evaluate the performance function in simulation, XFOIL viscous simulations

have been run for each combination of eleven Reynolds numbers and each integer angle of attack from 0◦

to 16◦. From these simulations, the 4 surface pressure values at the respective pressure transducer locations

were the only information extracted from the simulation used to compute Vli f t .

Figures 5.7, 5.8, and 5.9 present the evaluated performance function on the vertical axis and shifted

angle of attack on the horizontal axis. The angle of attack is shifted to represent the difference, in degrees,

from the point of maximum L/D ratio. (These optimal angles come from L/D peaks in plots such as

in Fig 5.10.) Ideally, every curve should have it’s minimum at α −αoptimal = 0, and for the transitional

Reynolds numbers (80,000 through 120,000), this is the case. From the simulation data it can be seen that

this behavior breaks down for Reynolds numbers outside of this range; however, it should be noted that for

the higher Reynolds number off-design cases, Vli f t tends to behave conservatively, favoring lower angles of

attack. This means that even for Reynolds numbers outside of the transitional range, the control system,

although giving up some optimality due to conservatism, should drive the system to the attached region as

opposed to the separated region.
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Figure 5.8: Vli f t for transitional Reynolds numbers, evaluated from simualated pressures.
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Figure 5.9: Vli f t for higher Reynolds numbers, evaluated from simualated pressures.
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(a) (b)

Figure 5.10: Lift Coefficient and L/D for Re = 90000 (a) and Re = 100000 (b).

Experimental Results. Lift and drag force measurement tests were performed in a subsonic, closed

return, wind tunnel with a 12” x 12” test section on a NACA 0025 airfoil. The wind tunnel velocity corre-

sponds to a Reynolds number of 1.0×105. The airfoil is designed to be modular so that multiple arrays of

microjets can be utilized as well as multiple arrays of pressure sensors. Multiple airfoils are built allowing

for tests to be performed with and without the use of Endevco unsteady pressure transducers. The stationary

angle of attack can be modified by changing out the bottom cover of the airfoil. Currently, bottom covers

have been manufactured for 0◦, 2◦, 4◦, 6◦, 8◦, 9◦, 10◦, 11◦, 12◦, 13◦, 14◦, 15◦, 16◦, 18◦, 20◦, and 22◦;

therefore, up to this point force measurements using this configuration are attainable only at this resolution.

These angles were selected to allow lift and drag readings to be recorded over a large span of angles, while

allowing for a better understanding of baseline flow as well as a higher level of accuracy in determining

where flow is separating. It is assumed that flow will separate around 11◦−12◦ angle of attack.

Lift tests were completed in this experimental configuration, and for comparison purposes, pressure

transducers were installed on a separate NACA 0025 airfoil in each of the four design locations (p1-p4

location shown in Fig. 5.14). A CAD illustration of the tunnel model with installed pressure transducers

is given in Fig. 5.11. After calibrating the pressure transducers, the experimental pressure signals were

given as inputs to the same function for Zli f t that was used in the simulation tests. Figure 5.12 shows the

lift measurements compared with the performance function evaluated for three trials of experimental data.

In this experiment, total flow separation occured between 14◦ and 15◦. The predictions made by the lift

performance function match very well when compared to the measured lift values, capturing the over trend
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Figure 5.11: Assembled Airfoil CAD with Pressure Transducers

of increasing lift and the drop caused by the separation event. For the sake of comparison, the prms plot

for a single sensor is given in Fig. 5.13 (p4 gave the best results for this Reynolds number). Although this

more traditional performance function distinguishes between separated and attached regimes, the presence

of local maxima may lead to convergence to a local minimum of L/D.

Ideally, the experimental data plot (Re of approximately 95,000) should closely match the shape of the

simulated data plots of Fig. 5.10. The difference between simulation and laboratory results is primarily due

to the unpredictable nature of the transition in the boundary layer from laminar to turbulent flow. While the

simulation evaluates the flow based on a turbulence model, the precise location at which a particular flow

will transition is highly sensitive to surface roughness and is difficult to predict. In addition to the transition

point uncertainty, the wind tunnel fan apparatus introduces turbulence that has not been accounted for in

the simulated data. For this reason, the Reynolds number of the tunnel experiment is effectively higher than

the computed value 95,000. The separation location observed in experiment is closer to the angle observed

in the Re=110,000 simulation than either of the Re=90,000 or Re=100,000 simulations. Even though these

difficulties exist in matching experimental flow separation to simulated flow separation, the performance

function, based only on steady pressures, is able to make good estimates for both sets of data.

62



Figure 5.12: Zli f t evaluated with measured pressures compared to measured lift for Re=95,000.

5.4 Experiments and Results

Results are presented for wind tunnel experiments with the goal of mitigating separation and therefore

controlling lift. This section contains a description of the experimental setup in Subsection 5.4.1, results of

open-loop characterization tests in Subsection 5.4.3 and results of closed-loop control in Subsection 5.4.4.
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Figure 5.13: Measured lift and negative prms evaluated with a single measured pressure signal for
Re=95,000.
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5.4.1 Flow Control Experimental Setup

Figure 5.14: Airfoil Schematic. This diagram includes the locations of microjet array M1 and M2
and pressure transducers P1 though P4.

The wind tunnel experiments were carried out in the subsonic closed loop wind tunnel at the FAMU-

FSU College of Engineering. This wind tunnel has a 12 inch x 12 inch square test section and is capable of

air flow speeds from 3.5 m/s to 35 m/s. The NACA 0025 airfoil model of Fig. 5.14 is used in the following

tests and is mounted to allow a variable pitch angle. Sensor and actuator placement is given in Table 5.1,

and chord and span dimensions are given in Table C.2 of Appendix C. At each pressure transducer location,

P1 through P4, an Endevco unsteady pressure transducer (model 8510B, 1 psi) was mounted flush with the

airfoil surface along the center chord. At each microjet location, M1 and M2, an array of 40 equally-spaced

microjets were drilled into the channel, normal to the airfoil surface. Each microjet channel was supplied

from both ends by plastic tubing to the output end of a solenoid valve (SensorTechnics HF Pro). The input

end of the solenoid valve was attached to a steady pressure source supply between 0.5 psig and 10 psig.

In each experiment, angle of attack was measured by taking a side view photograph and comparing pixel

coordinates of the support pins to pixel coordinates of points on the tunnel wall.

During tests, data signals from the four pressure transducers were amplified using a Hendrick & As-

sociates multichannel amplifier and acquired digitally using dSPACE hardware. The command signals to
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Table 5.1: Chord Locations of Microjet exits and Transducers.

Component M1 M2 P1 P2 P3 P4
x/c 0.0 0.063 0.127 0.300 0.452 0.667

Figure 5.15: Buffer Circuit Diagram . The buffer circuit amplifies an input voltage signal so that
the output voltage has sufficient current to drive the solenoid valves.

pressure transducers were sent from dSPACE and amplified using the op-amp buffer circuit of Fig. 5.4.1. In

open and closed loop testing, the single-input cases used only microjet array M2, and the two-input cases

used both arrays M1 and M2, supplied independently by two solenoid valves.

5.4.2 Particle Image Velocimetry

Two-Component Particle Image Velocimetry (PIV) was used in order to quantitatively examine the

flow field and provide evidence of reattachment of the separated flow. Because surface mounted unsteady

pressure sensors were in operation during PIV acquisition, a seeding fluid which left little to no residue on

the sensors was needed. For this application, Di-Ethyl-Hexyl-Sebacat (DEHS) was used with a Laskin type

seeder; nominal particle diameter was ∼1 µm. A 200 mJ, pulsed, Quantel R© Nd:YAG laser illumined the

seeded flow field of interest on the suction side of the airfoil. The laser sheet was formed by passing the

beam through LaVision sheet forming optics and expanded by a cylindrical lens; the optics were adjusted to

achieve a laser sheet thickness of ∼1 mm throughout the measurement domain. The spanwise location of

the laser sheet was approximately at the airfoil centerline. Due to the unsteady pressure sensors installed at
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Figure 5.16: PIV Experiment Photograph. The PIV setup takes snapshot images of illuminated
smoke particles. Processing the images yields velocity field measurements. The laser and optical
hardware are configured to illuminate only the smoke particles in the desired plane.

the airfoil’s true centerline, the laser sheet was offset by one pressure sensor diameter (∼3 mm) in order to

minimize reflections. The PIV configuration is shown in Fig. 5.16.

Images were acquired at a rate of 15 Hz with a 5.5 megapixel sCMOS camera equipped with a 55

mm lens. Each PIV case consisted of the ensemble average of 1,000 instantaneous image pairs in order to

adequately estimate mean and turbulent statistics of interest. Images were processed using LaVision’s DaVis

8.2 software. Velocity fields were correlated using a multipass algorithm with a final interrogation window

size of 32 x 32 with a 75% overlap. The resulting velocity field spatial resolution is ∼ 0.9 mm x 0.9 mm.

5.4.3 Open-Loop Characterization

Open loop characterization of the flow separation control system relied on a frequency sweep input. The

supply voltage was a 50% duty cycle square wave of increasing frequency. After conducting tests using a

steady supply pressure, the frequency was increased from 0 Hz to 300 Hz in 6 Hz increments, and 3 seconds

of data was taken at each frequency. Measurements consisted of signals from pressure transducers located

at the microjet channel (at the edge of the airfoil span) and at the microjet exit (2mm from the jet exit at the

center of the airfoil span). For each input frequency, the time domain response was analyzed using phased
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Figure 5.17: Time Domain Channel Pressures during Pulsed Actuation. The phase-averaged re-
sponse of the actuator to a 12 Hz square wave is plotted. The width and delay computations are
calculated at half of the maximum height of the waveform.
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Figure 5.18: Frequency Domain Channel Pressures during Pulsed Actuation. The response of the
actuator to frequency inputs is plotted.This plot displays the response measured at the microjet
channel for several different source pressures P0.
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Figure 5.19: Exit Pressures during Pulsed Actuation. The pressures measured at the microjet
exit display a similar trend to those measured within the channel; however, because of the low
signal-to-noise ratio, the data for a 10 PSI source pressure is plotted.
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Figure 5.20: Zli f t Response to Frequency Actuation at AOA = 19.8◦. For various flow conditions,
the majority of the lift improvement occurs from 0 to 80 Hz. This is consistent with findings from
bandwidth tests, which indicated that 80 Hz was the highest frequency to which the valves are
capable of responding.
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Figure 5.21: Zli f t response to frequency actuation at AOA = 22.0◦. Open loop results at a different
angle of attack indicate a clearly nonlinear relationship between input frequency and Zli f t .

72



averaged data, such as the data plotted in Fig. 5.17 for the data collected during 12 Hz excitation. From

these phase averaged curves, the amplitude, width, and time delay between voltage excitation and pressure

response were calculated, as displayed in the figure. The delay and width of the waveform were computed

at 50

The data was sampled at 2 kHz, and time and frequency domain analysis was performed on these mea-

surements. From 0 to approximately 80 Hz, the pressure output frequency is identical to the voltage excita-

tion frequency. Above 80 Hz, mode switching occurs due to the dynamics of the solenoid valve. The valve,

which is designed for 30 Hz operation, switches primarily between the input frequency and 1
2 of the input

frequency.

Microjet exit pressure data is plotted in Fig. 5.19. In order to attain reasonable signal-to-noise ratio

(SNR) at the jet exit, the source pressure was increased to 10 psi. The pressure data collected at the microjet

exit (Fig. 5.19(b)) displayed similar trends to the data collected at the microjet channel (Fig. 5.19(a)).

In addition to bench top characterization, the open loop response of the overall system was measured in

the wind tunnel. The input for these tests was the solenoid valve voltage frequency, and the output was Zli f t ,

the lift based performance function computed from the transducer measurements at locations P1 through P4.

This performance function, derived in prior research [62], uses the four pressure signals to approximate lift

changes, weighting each sensor reading based on sensor spacing and airfoil geometry. For the NACA 0025

with sensors located as indicated in Table 5.1, Zli f t may be computed as

Zli f t =
N

∑
i=1

wi pi, (5.15)

with the weights wi given in Table C.2 of Appendix C. In the state vector of Eq. (5.6), each yk represents

a Zli f t measurement, and each uk represents a voltage frequency supplied to the solenoid valve for microjet

channel M2. Changes in the command voltage frequency were observed to cause changes in the steady state

value of Zli f t . After each 6 Hz frequency increment, data was collected after the system reached a steady

state. The data is presented in Figs. 5.20 and 5.21. Evidence of an actual change in lift as Zli f t changes

is given in the cp plots of Fig. 5.22. These discrete cp measurements suggest that the magnitude of the

area under the curve increases when going from 0 Hz to 72 Hz, which corresponds to greater suction on the

upper surface and higher lift. Further evidence includes observations of separation reduction indicated by

alignment of tufts on the airfoil surface as well as the generation of significant moments that were able to

rotate the airfoil setup when the microjets were actuated without the shaft clamped in place. Additionally, the
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Figure 5.22: Measured cp Values at Pressure Transducer Locations. The pressure transducers
are positioned to resolve the suction peak, which grows in each case due to frequency actuation.
Larger suction peaks generally correspond to increased overall lift.
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PIV measurements that are included in the following section provide definitive evidence of the effectiveness

of the microjet actuators to mitigate separation. Momentum coefficients cµ in these experiments ranged

from 0.33 (higher Reynolds number tests) to 0.5 (lower Reynolds number tests), since the typical microjet

velocity was approximately 5 m/s.

5.4.4 Closed-Loop Control

Frequency sweeps as mentioned above were used to train the neural network and represent the input-

output behavior of the system with a nonlinear model. Using a model initialized with sweep data, Adaptive

SBMPC was applied to perform closed loop control. During the 30-second learning phase (not plotted),

the identification algorithm was enabled, but the control algorithm was disabled. During the control phase,

both the controller and identification were enabled and produced successful tracking of the desired reference

value of Zli f t . In each experiment, the reference value was commanded manually, and the control system

automatically made the input adjustements necessary to drive the measured Zli f t signal to match the de-

sired reference signal. The tuning parameters selected for the identification and control algorithms are given

respectively in Figures D.1 and D.3 of Appendix D. In the plots of Figs. 5.23 through 5.26, the Zli f t was

normalized (divided by 100) to match the order of magnitude of the input space. This type of scaling is com-

monly applied [33] when using neural networks so that inverted matrices are numerically well-conditioned.

Reference tracking capability is demonstrated for a variety of reference trajectories. Figs. 5.23 and 5.24

indicate with an arrow the time at which control was activated. In the subsequent figures, the controller is

already active at time zero.

These results demonstrate the capability to not only maximize lift, but also control lift by commanding

intermediate values. In Fig. 5.23, the commanded reference signal (dashed line) is constant, which means

the control system was configured to increase and hold Zli f t constant. For this case, the momentum ratio cµ

of microjet momentum to free stream momentum is 0.4 and the Reynolds number is 125,000. The actual

ouput signal (solid line) achieves the commanded increase-and-hold behavior. In Fig. 5.24, the commanded

reference was manually stepped downwards, in order to demonstrate the ability of the control system to

decrease Zli f t when desired. This test was also configured with AOA= 20◦, RE= 125,000, and cµ=0.4. Fig

5.25 displays similar results and includes both upward and downward stepwise motion, again with AOA=

20◦, RE= 125,000, and cµ=0.4. For the case shown in Fig 5.26, the neural network was trained at a Reynolds

number of 125,000, but control is demonstrated for a Reynolds number of 150,000. In this test case, the

momentum coefficient cµ is 0.33. Some prediction error, indicated by the departure of the dotted line from
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the solid line, occurs around 13 seconds, but the error is corrected within 5 seconds. This demonstrates the

robustness achieved by online system identification.

Fig. 5.27 shows the control adjustment in reaction of the control system to changes in Reynolds number

during operation. The system adjusts the neural network model at the same time as the updated control

signal is being computed and executed. When the Reynolds number decreases from 150,000 to 140,000, cµ

also changes from 0.33 to 0.36. The adaptation of the neural network model is vital when flow conditions

change. In Fig. 5.27, the model adaptation is what allows the neural net prediction signal (dotted curve) to

adjust to match the measured signal (solid curve) even when the flow conditions change. SBMPC is then

responsible for modifying the control input signal so that the prediction signal matches the reference signal

(dashed curve). Because of the closed loop control system, it was possible to take a scenario where the flow

was controlled and attached, change the wind tunnel speed so that the flow separates, and observe the neural

network adaptation and controller reaction as the flow is automatically reattached.

In order to verify that the changes in Zli f t actually correspond to a changing degree of separation in

the flow, visualization experiments were performed to capture the velocity field surrounding the wing both

with and without control enabled. In these experiments, the airfoil wind tunnel configuration was fixed to a

particular angle of attack and tunnel velocity. The velocity field was then measured via PIV and averaged

over a 1000-frame, 60-second window. For the purpose of visualization, the image processing results are

displayed with a flipped y-axis so that the angle of attack is depicted as positive (the PIV experiments

were performed with a negative angle of attack). The control system was then enabled to maximize Zli f t .

The control system can be configured to maximize lift by prescribing a constant reference trajectory that is

greater than the attainable range of Zli f t values. In this case, the reference for Zli f t was set to 0. A second

series of PIV measurements of the same duration was collected to characterize the controlled flow. Contours

of streamwise velocity are shown in Figs. 5.28 through 5.33, and display the uncontrolled and controlled

flows for two different flow conditions (AOA 16◦, Re 150,000, and 22◦, Re 90,000, respectively) when the

controller is set to maximize Zli f t . In these figures, the separated region is outlined by zero-velocity contours

shown in black. In the cases of Figs. 5.28, 5.31, and 5.32, the separation bubble is greatly reduced in size

and begins further downstream. The remaining cases of Figs. 5.28, 5.28, and 5.28 represent unsuccessful

control cases, in which control at all available frequencies is ineffective. The main limitation on control

authority of the microjet actuators is the valve bandwidth of 80 Hz. Higher frequency actuation would
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Figure 5.23: Closed Loop Case 1. The Reynolds number is 125,000, and the angle of attack is
20◦. This closed loop case illustrates ability to follow a step reference signal subsequent to the
activation of the SBMPC controller.
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Figure 5.24: Closed Loop Case 2. The Reynolds number is 125,000, and the angle of attack is
20◦. This closed loop case illustrates the ability to command intermediate vales of Zli f t .
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Figure 5.25: Closed Loop Case 3. The Reynolds number is 125,000, and the angle of attack is
20◦. This closed loop case illustrates the saturation behavior of the controller: from time 0 to 5
seconds, Zli f t is simply maximized when the specified reference is above the attainable actuation
range. Tracking resumes when the reference value is decreased to an attainable value.
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Figure 5.26: Closed Loop Case 4. The Reynolds number is 150,000, and the angle of attack is 20◦.
This closed loop case illustrates the ability to track ramp trajectories. During training, the tunnel
Reynolds number was set to 125,000, ensuring that online model adaptation would be required
when tested at a higher Reynolds number.
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Figure 5.27: Closed Loop Case 5. The Reynolds number shifts from 150,000 to 140,000, and the
angle of attack is 20◦. This case demonstrates that the ability to adapt enables the control system
to be robust to changes in the flow conditions.
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Figure 5.28: Baseline (a) and Controlled (b) Vx for 16◦, 15 m/s. The baseline PIV data was
collected with the control system off. In the controlled case, data was collected with the control
system set to maximize Zli f t , and the tunnel speed corresponds to a Reynolds number of 150,000
based on chord length.

enable effective control for more more cases. For such cases, closed loop control can be utilized to conserve

energy by turning the actuators off when control is ineffective.

5.5 Summary

Closed loop control of separated flows has been demonstrated using the Adaptive SBMPC control sys-

tem. Quantitative results using a pressure-based lift approximation and PIV flow imaging indicate the ef-

fectiveness of the control system to control flow behavior based on a nonlinear neural network model con-

structed from data. This model is adjusted in real time to represent changes in flow conditions while the

controller is in operation. The closed loop experiments demonstrated successful tracking of desired values

of Zli f t by mitigating flow separation. The control system is able to increase or decrease lift in response to an

external command, subject to the limitations of the actuator. Both the nonlinear input to output behavior of

the system and the nonlinear control law are learned adaptively, so even when flow conditions were modified

during a control experiment, the control system was successful in adjusting the inputs to meet the desired

Zli f t value. To date, only a few selected cases have been visualized. Future tests will cover a wide range of

flow conditions and will also incorporate multiple input-multiple output control by enabling both rows of

microjets, M1 and M2. Further analysis and flow visualization tests will quantify the achieved lift gains and

provide insight into the control authority of the microjet actuators and cost-benefit balance of the overall
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Figure 5.29: Baseline (a) and Controlled (b) Vx for 16◦, 12 m/s. The baseline PIV data was
collected with the control system off. In the controlled case, data was collected with the control
system set to maximize Zli f t , and the tunnel speed corresponds to a Reynolds number of 125,000
based on chord length.
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Figure 5.30: Baseline (a) and Controlled (b) Vx for 16◦, 15 m/s. The baseline PIV data was
collected with the control system off. In the controlled case, data was collected with the control
system set to maximize Zli f t , and the tunnel speed corresponds to a Reynolds number of 90,000
based on chord length.
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Figure 5.31: Baseline (a) and Controlled (b) Vx for 22◦, 11 m/s. The baseline PIV data was
collected with the control system off. In the controlled case, data was collected with the control
system set to maximize Zli f t , and the tunnel speed corresponds to a Reynolds number of 90,000
based on chord length.
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Figure 5.32: Baseline (a) and Controlled (b) Vx for 22◦, 12 m/s. The baseline PIV data was
collected with the control system off. In the controlled case, data was collected with the control
system set to maximize Zli f t , and the tunnel speed corresponds to a Reynolds number of 125,000
based on chord length.
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Figure 5.33: Baseline (a) and Controlled (b) Vx for 22◦, 15 m/s. The baseline PIV data was
collected with the control system off. In the controlled case, data was collected with the control
system set to maximize Zli f t , and the tunnel speed corresponds to a Reynolds number of 150,000
based on chord length.

control system. The mounting of this experiment on a force balance will allow further quantitative analysis

such as the capability of these actuators to control drag and moments on the wing. This will ultimately

indicate whether a microjet and SBMPC control system is a feasible way to achieve pitch and roll control

on a wing.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Summary of Completed Research

The completed dissertation research includes development of simulation and experimental software,

testing in simulation of model-based adaptive control algorithms for simulated nonlinear systems, imple-

mentation in simulation and experiments of neural network identification approaches, and implementation

in simulation and experiments of SBMPC. The simulated study of coal power plant combustion served as a

proof of concept for the control system and also demonstrated MIMO results. The flow separation control

application demonstrated the real time implementation of the algorthms. Intermediate work, including the

characterization of the relationship between sensor signals and aerodynamic performance from experimen-

tal data and the development and validation of a lift-based performance function, are the types of enginering

tasks that would need to be performed when applyiing the general Adaptive SBMPC algorithm to various

real world applications. The software modules for MRAN and SBMPC algorithms have been compiled

and executed on dSPACE hardware (Solaris operating system) for real time execution. SBMPC controller

code has been implemented in C and adapted to the real-time framework to compile on dSPACE. Neural

network identification code has been implemented in MATLAB, translated to C, and implemented for real

time execution in dSPACE.

A dynamic simulation with multiple inputs and outputs was implemented to demonstrate the adaptive,

nonlinear, and constraint-handling capabilities of the Adaptive SBMPC method. This work investigated

a problem from process control literature and extends the problem to address MIMO and time-varying

systems. A custom implementation of Neural GPC was prepared in order to compare the performance of

Adaptive SBMPC with an existing method. The performance exceeds that of Neural GPC and requires less

computation time for each simulated example.

For the application to flow control, hardware construction was completed for incremental designs of

the NACA 0025 airfoil fitted with pressure transducers and microjet channels as well as a motor-pulley

system for repeatable angle of attack actuation in 0.3◦ increments. Two iterations of a pressure regulation

system have been constructed and used for all open loop SISO and MIMO tests, and successful feedback
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control has been demonstrated on the wind tunnel experimental model. Efficacy of the control system was

verified with PIV imaging for selected feedback control cases. The same control system has been applied to

multiple flow condition configurations without altering the tuning parameters and has performed effectively

across a range of angles of attack and Reynolds Numbers, which demonstrates the robustness of the method

achieved through adaptation. The diversity of studied applications, including both flow control and power

plant control, demonstrates that the Adaptive SBMPC technique is suitable for diverse applications.

6.2 Future Work

Several areas for continued research that would bring this technology closer to implementation on real

industrial systems. These areas include computational speedups and additional applications. For the flow

control application, future work includes exploration of other sensors and actuators, and further experimen-

tation to demonstrate robustness.

6.2.1 Learning of Heuristics

One potential improvement to Adaptive SBMPC, the learning of A∗ search heuristics for general non-

linear systems, which would enable further computational improvements, are planned as future work. This

improved implementation will make use of past optimization cost information to speed up subsequent opti-

mizations for the same plant.

6.2.2 Parallel Implementation

Further computational improvement is possible using parallel computation. During SBMPO execution,

the majority of the the computational effort is spent on expansion of nodes. These expansions may be

computed in parallel in order to leverage the capabilities of multi-core CPU or GPU hardware. These

computation improvements will allow the application of Adaptive SBMPC to larger systems as well as

systems with fast real-time computation requirements.

6.2.3 Additional Applications

The techniques developed in this dissertation are applicable across several industries, and commercial

partnership and licensing opportunities are being explored in the power plant control and automotive engine

tuning. Discussions with Siemens Energy, Inc., have indicated that there is interest in the Adaptive SBMPC

technology for emissions control. Preliminary research results for Adaptive SBMPC have demonstrated that
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the technique is applicable to power generation and emissions regulations. The application is control of

combustion in a coal-fired or gas-fired boiler, which has been demonstrated in simulation. Although smaller

plants are more numerous, large plants (200 MW and above) produce the majority of the nation’s energy

demands, and these are the most heavily regulated by the EPA.

The automotive engine industry, another target market, is also changing dramatically due to environ-

mental concerns, yet the industry has sustained growth over the past decade. Efficiency has long been a

driver for this industry, and with the rising price of fuel, this will remain a priority. Adaptive SBMPC is

a fast method that can be applied to carry out optimization of engine parameters, which leads to increased

efficiency and longevity of engine operations. With numerous parameters and a large search space, time-

consuming manual tuning, the current approach, results in suboptimal solutions. As a result, existing engines

are not achieving the best possible efficiency. As in the electric power industry, EPA regulation is a major

factor in the US automotive engine market. Cummins, for example, was the only company in the market to

meet the 2010 EPA standards for NOx emissions with their release of a 6.7-liter turbo diesel for the Dodge

Ram Heavy Duty pickup. Better efficiency and control of emissions will continue to be in high demand, as

environmental legislation and rising fuel prices continue to make innovation a necessity.

6.2.4 Future Flow Control Research

Because of the variety of new experimental actuators as well as new sensor concepts, future flow control

applications for Adaptive SBMPC are numerous. Some directions for future flow control research using

Adaptive SBMPC are given below.

High Frequency Actuation. The flow control actuation using solenoid valves produced actuator sig-

nals up to approximately 80 Hz, which allows for actuation relevant to large vortex shedding in the wake of

the airfoil. The frequencies produced by these actuators are not high enough, however, to interact with the

smaller-scale Kelvin Helmholtz vortex structures that form along the boundary layer, which occur on the

order of kilohertz at low Reynolds Numbers [45].

Performance Function Testing for Alternate Geometries. Studies using the NACA 0025 airfoil

geometry have produced favorable results in both simulation and experiment. In order to produce evidence

of the performance function’s wide applicability to airborne systems and turbomachinery, tests should be

performed with flat plate, NACA 0012, and asymmetric airfoil geometries. It is also possible to mount
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pressure sensors across the airfoil surface in a spanwise array and use a performance function to measure

rolling moments on the airfoil.

Performance Function Testing in Challenging Environments. It is critical to know the capabilities

and limitations of a control system, especially of technologies that may be deployed in the future. We pro-

pose a series of tests that will demonstrate performance function effectiveness over a series of emulated

environmental effects. One such effect is loud broadband noise from an external source. It is hypothe-

sized that the lift based performance function will handle this disturbance better than an RMS performance

function because the lift based performance function uses the mean pressure, not its fluctuations, to de-

tect separation. Other environmental factors would include decreased microjet supply pressures or variable

humidity and fog.
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APPENDIX A

SBMPO ALGORITHM PSEUDOCODE

The SBMPO Algorithm is listed here. Beginning with the root node that represents the system’s current

state, a graph is built by iteratively expanding the most promising node to generate B child nodes. Each

child node is assigned an input sample, which is propagated forward through the model to predict a state

for that node. The potential cost of reaching that state is used to prioritize the nodes and select the most

promising candidate for the next iteration of expansion.
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Algorithm 1 Calculate input sequence U via SBMPO graph search
Insert root node into the queue with
i← 0
CE,i← 0
ND,i← 0
parenti← NULL
xi← x0

Evaluate heuristic cost
CH,i← HEUR COST EVAL
Pop the top node from the queue
while (ND,top < N)∧ (i < MAX NODES) do

while CE,top = NULL do
Evaluate edge cost
CE,top←CE,parent+EDGE COST EVAL
Re-insert node into queue, sorted by CE +CH

Pop the top node from the queue
end while
Expand by Generating B child nodes
for j ∈ [i+1, i+B) do

Generate input space sample
u j←HALTON SEQUENCE LOOKUP
Integrate the model
x j←MODEL EVAL(u j,xtop)
Evaluate heuristic cost
CH, j← HEUR COST EVAL
CE, j← NULL
ND, j← ND,top +1
parent j← i
Insert node j into queue, sorted by CH

end for
i← i+B
Pop the top node from the queue

end while
Construct the optimal input trajectory
j← top
while ND, j > 0 do

U(ND, j−1) = u j

j← parent j

end while
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APPENDIX B

SBMPO SOUNDNESS AND COMPLETENESS PROOF

This proof of soundness and completeness for the algorithm listed in Appendix A is loosely based on the

procedure in [35], in which soundness and completeness is derived for a different graph search algorithm. Its

culmination, Theorem B.0.6, guarantees that, subject to sufficient depth and breadth of sampling, SBMPO

will find a globally optimal solution.

Assumption B.0.1. The heuristic function is optimistic.

Assumption B.0.2. All reachable states have finite edge costs.

Assumption B.0.3. All edge costs are non-negative.

Lemma B.0.4. The Algorithm will terminate in a finite number of steps, returning a path of length N.

Proof.

The root node is inserted only once before the main algorithm loop begins. Each node, once expanded,

is not re-inserted into the queue, and new nodes (other than the root node) are only inserted by expansion

of a parent node. Therefore, each node in the graph is introduced no more than once. In the case in which

every parent node of depth ND is expanded, there are at most BND nodes of depth ND+1 placed in the queue.

No node of greater depth than the prediction horizon N can be generated, since the algorithm termination

clause would have been reached first. Including node depths 0 through N, there are at most L =∑
N
ND=0 BND =

1−BN+1

1−B nodes in the entire graph. Each time through the loop, either a node edge cost is computed, a node is

expanded, or the algorithm terminates.

If a node edge cost is computed, the queue size is unchanged after that loop iteration (i.e., the node is

re-inserted). The number of items in the queue without a computed edge cost, however, decreases by 1.

Since each node is introduced no more than once and each edge cost is computed no more than once, the

algorithm must terminate before exceeding 2L loop iterations. The returned path is of length N because the

algorithm can only terminate upon selecting a path of length N.
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Lemma B.0.5. The returned path’s total cost is less than or equal to that of any path in the graph of length

N.

Proof. (By Contradiction.)

Assume that for the selected path, there exists a path P− of length N in the graph with a lower cost than

the path returned by the algorithm. Therefore P− must not be represented from the queue. Otherwise, it

would have been selected instead of the returned path. The node representing selected path N+ must have

been at the top of the sorted queue (having the lowest total cost in the queue). Because all edge costs are

positive, and a node’s heuristic value is optimistic, every partial path contained in a path of length N will

have a cost less than or equal to the length-N path that contains it.

Let node N− represent the terminal node of the longest partial path of P− that was added to the queue.

This node must exist because all paths in the graph begin with the same root node, which represents the

initial state. Then N− must have lower total cost than the node N+ that was selected by the algorithm.

Therefore, N− must have been placed higher in the sorted queue and would have been expanded prior to

the selection of N+, but this yields a contradiction, because the children of node N− would include a node

representing a partial path of P− that is one edge longer that the path represented by N−. This is not possible

because we chose N− to be the longest partial path of P− that was added to the queue.

Theorem B.0.6 (Soundness and Completeness). Upon termination, the SBMPO algorithm will produce a

path of nodes representing a minimal cost trajectory among those represented by the graph.

Proof. This theorem follows from Lemmas B.0.4 and B.0.5.
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APPENDIX C

LISTS OF SIMULATION AND EXPERIMENT
PARAMETERS

Table C.1 gives the baseline parameters used in the simulated steam boiler. Table C.2 gives the parameters

describing the wind tunnel experiment configuration.

Table C.1: Simulation Parameters: Combustion

Symbol Parameter Value(s)

Vd Gas Production Constant 2.399×10−3 m3/kg

VO O2 Consumption Constant 1.543×10−3 m3/kg

x f
C Fuel Carbon Fraction 0.8087

V Volume of Chamber 0.01 m3

Φmax Max Air Flow 1.833e-2 m3/s

T Control Period 10 s

τ Simulation Integration Step 1×10−4 s
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Table C.2: Experiment Parameters: Flow Control

Symbol Parameter Value(s)

w1 p1 Weight -1.000

w2 p2 Weight -0.9781

w3 p3 Weight -0.9348

w4 p4 Weight -0.9126

c Chord Length 6 inches

b Span Length 11.5 inches

T Control Period 100 ms

P0 Microjet Source Pressure 0.5 to 10
PSI,

Vjet Microjet Velocity (P0 = 2
PSI)

5 m/s
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APPENDIX D

LIST OF TUNING PARAMETER CHOICES

Tables D.1, D.2, D.3, and D.4 give the tuning parameters used in the simulation for each identification and

control method. Unless otherwise noted the same tuning parameters were used for all three cases. Tables

D.5 and D.6 give the tuning parameters used in the flow control experiment for the identification and control

methods.

Table D.1: MRAN Parameter Choices: Combustion Control

Symbol Parameter Value(s)

E1 Instantaneous Error Threshold 0.00209

E2 RMS Error Threshold 0.005

E3 Basis Vector Spacing Threshold 0.16

E3DEC E3 Geometric Decay Rate 0.9985

E3MIN E3 Decay Floor 0.03

M RMS Averaging Window 48

N∗ Max Hidden Units 480

κ Overlap Factor 10.0

q Kalman Step Parameter 0.5

p0 New Parameter Variance 5.0

R Assumed Sensor Noise Variance 0.0

Mp,1 Pruning Window 1 800

Mp,2 Pruning Window 2 2000

δp,1 Pruning Threshold 1 2×10−8

δp,2 Pruning Threshold 2 1×10−4
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Table D.2: BPN Parameter Choices

Symbol Parameter Value(s)

NH Hidden Units 19, 39, 39∗

α Learning Rate 5.7

η Momentum Coefficient 5000,
2778.7,
2778.7∗

L Network Gain 0.007

M1 y1 Scaling Multiplier 6.0

B1 y1 Scaling Bias 0.0

M2 y2 Scaling Multiplier 105†

B2 y2 Scaling Bias 0.5†

M3 y3 Scaling Multiplier 2.0†

B3 y3 Scaling Bias 0.0†

∗ Case 1, Case 2, and Case 3, respectively.

† Only applicable to Cases 2 and 3.

Table D.3: SBMPC Parameter Choices: Combustion Control

Symbol Parameter Value(s)

B Branchout Factor 60

N Prediction Horizon 4

Nc Control Horizon 2
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Table D.4: GPC Parameter Choices: Combustion Control

Symbol Parameter Value(s)

N Prediction Horizon 4

Nc Control Horizon 2

ε Solver Tolerance 10−6

Imax Max Newton Iterations 1500

s Constraint Sharpness 10−15

λ Damping Factor 4×10−3,
9×109,
9×109*

*Case 1, Case 2, and Case 3, respectively.

Table D.5: MRAN Parameter Choices: Flow Control

Symbol Parameter Value(s)

E1 Instantaneous Error Threshold 0.5

E2 RMS Error Threshold 2.0

E3 Basis Vector Spacing Threshold 2.0

E3DEC E3 Geometric Decay Rate 1.0

E3MIN E3 Decay Floor 2.0

M RMS Averaging Window 48

N∗ Max Hidden Units 120

κ Overlap Factor 1.0

q Kalman Step Parameter 0.5

p0 New Parameter Variance 5.0

R Assumed Sensor Noise Variance 0.0

Mp,1 Pruning Window 1 800

Mp,2 Pruning Window 2 2000

δp,1 Pruning Threshold 1 2×10−8

δp,2 Pruning Threshold 2 1×10−4
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Table D.6: SBMPC Parameter Choices: Flow Control

Symbol Parameter Value(s)

B Branchout Factor 60

N Prediction Horizon 2

Nc Control Horizon 2

T Control Sample Period 100 ms
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APPENDIX E

LIFT BASED PERFORMANCE FUNCTION PLOTS

These data points are from XFOIL viscous simulations. The lift approximating function Zli f t as well as

CL and CL/CD are dimensionless and normalized here for plotting purposes. Ideally, the maximum of each

function should occur at the same angle of attack.

Figure E.1: Lift Coefficient and L/D for Re = 50000.
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Figure E.2: Lift Coefficient and L/D for Re = 60000.

Figure E.3: Lift Coefficient and L/D for Re = 70000.
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Figure E.4: Lift Coefficient and L/D for Re = 80000.

Figure E.5: Lift Coefficient and L/D for Re = 90000.
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Figure E.6: Lift Coefficient and L/D for Re = 100000.

Figure E.7: Lift Coefficient and L/D for Re = 110000.
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Figure E.8: Lift Coefficient and L/D for Re = 120000.

Figure E.9: Lift Coefficient and L/D for Re = 130000.
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Figure E.10: Lift Coefficient and L/D for Re = 140000.

Figure E.11: Lift Coefficient and L/D for Re = 150000.
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